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Abstract ) 1

Abstract

—

“This thesis explores the idea of learning cflicient strategies for solvin.g problems by scarching for
macro-eperators. A nacro-operator, or nacro for short, is simply a scquence of operators chosen
from the primitive operators of a problem. The technique is particularly uscful for problems with
non-serializable subgoals, such as Rubik’s Cube, for which other weak methods fail. Both a problem-
solving program and a learning program are described in detail. The performance of these programs
is analyzed in terms of the number of macros required to solve all problem instances, the length of
the resulting solutions (cxpressed as the number of primitive moves), and the amount of time
neeessary to learn the macros. In addition, a theory of why the method works. and a characterization
of he range of problems for which it is uscful are presented. The theory introduces a new type of
problem structure called operator decomposabiliry. Finally, it is concluded that the macro technique
is a valuablc addition to the class of weak methods, that macro-operators constitute an interesting and
important representation of knowledge, and that scarching for macros may be a uscful gencral
learning paradigm, ‘;./ o
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Chapter 1
Introduction and Thesis Summary

‘This thesis explores the idea of learning cfficient strategics {or solving problems by scarching for
macro-operutors. A macro-operator, or macro for short, is simply a scquence of operators chosen
from the primitive operators of a problem. The technique is particularly uscful for problems with
non-serializable subgoals, such as Rubik's Cube, for which other weak methods fail. Both a problem-
solving program and a learning program arc described in detail. The performance of these programs
is analyzed in terms of the number of macros required to solve all problem instances, the length of
the resulting solutions (cxpressed as the number of primitive moves), and the amount of time
necessary to learn the macros. In addition, a theory of why the method works, and a characterization
of the range of problems for which it is uscful arc presented. The theory introduces a new type of
problem structure called operator decomposability. Finally, it is concluded that the macro technique
is a valuable addition to thc class of weak methods, that macro-operators constitute an interesting and
important representation of knowledge, and that scarching for macros may be a uscful general

lcarning paradigm.

1.1. Introduction

One view of the the field of artificial intelligence is that it is the study of weak methods [Newell 69].
A weak method is a gencral problem solving strategy that can be used when not enough knowledge
about a problem is available to employ a more powerful solution technique. The virtuc of the weak
methods is the fact that they only require a small amount of knowledge about a problem and hence
arc extremely general. The sct of weak methods includes gencerate-and-test, heuristic scarch, hill-
climbing, and mcans-ends analysis. With the e¢xception of generate and test, most of these techniques
rely on a heuristic ¢cvaluation function which is used to cstimate the distance to the goal. For some
problems, however, no such evaluation function is known. This suggests that such problems do not

have sufficient structure to employ any technique more efficient than brute-force search to solve a
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particular instance of the pr()blcm.l

Consider, however, a situation where we arc not interested in solving just one instance of the
problem, but rather arc concerned with being able to solve many problem instances. In that case, it
may be advantageous to learn a gencral strategy for solving any instance (Sf the problem, and then
apply it to cach problem instance. This allows the computational cost of the learning stage to be
amortized over all the problem instances. Such an approach will only be uscful if there is some
structure to the collection of problemn instances such that the fixed cost of fcarning a single strategy
plus the marginal cost of applying it to cach problem instance is less than the cost of solving cach

instance from scratch.

In other words, cven though a given instance of a problem does not have sufficient structure to
allow an cfficient solution. a collection of problem instances may have some common structure that
allows the whole set to be solved with much less work than the sum of solving cach instance
individually. This suggests the existence of weak methods for lcarning, as opposed to problem
solving, based on such structure.  This thesis explores one such weak method of learning, that of

scarching for macrg-opcrators.

1.2. Thesis Summary

This section presents a short summary of each of the remaining chapters of the thesis.

1.2.1. Chapter 2: The Need for a New Problem Solving Method

Chapter 2 demonstrates that there ¢xist probiems that have cfficient solution strategics that cannot
be explained by any of the current stock of weak methods, and presents a 2x2x2 version of Rubik’s
Cubc as an cxample. The goal state of this problein is naturally described as a conjuncti.on of a set of
subgoals. It is observed that all known algorithms for this problem require that previously satisfied
subgoals be violated later in the solution path. Such a sct of subgoals is referred to as non-serializable.
However, the standard technique for solving problems with subgoals, means-cnds analysis, docs not
allow non-scrializable subgoals. Furthermore, we present empirical evidence that several natural
heuristic evaluation functions for the simplificd Rubik's Cube provide no uscful cstimate of distance
to the goal, suggesting that heuristic search is of no use in solving the problem. Hence, Rubik’s Cube

cannot be solved by any of thesc techniques.

1’T‘he terms “problem™ and "problem space” in this thesis refer to a set of states .. -~ :-ollection of operators that connect
them. A "problem instance” is a problem with a specified pair of initial and goal states.
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1.2.2. Chapter 3: Previous Work

Other work rclated to this rescarch is reviewed in Chapter 3. Ernst and Goldstein wrote onc of the
first programs that Ilcarned cfficient strategics for solving problems, by learning differences for the
General Problem Solving program of Newell and Simon.  Non-scrializable subgoals were studicd
extensively in the coatext of the blocks world by Sussman, Sacerdoti, Warren, Tate, Manna and
Waldinger. and others. Macro-operators were first learned and used by the STRIPS problem solver
and later by the REFLECT system of Dawson and Siklossy. Banerji suggcested the use of macros to
deal with the non-scrializable subgoals of the Rubik's Cube and the Fifteen Puzzle. Finally, Sims
and others showed how to organize scts of macros to solve permutation puzzles, of which Rubik’s

Cube is an cxample, and demonstrated one way the macros could be learned.

1.2.3. Chapter 4: The Macro Problem Solver

Chapter 4 describes the Macro Problem Solver, an extension of the General Problem Solver to
include macro-operators. ‘The basic idca of the method is to apply macros that may temporarily
violate previously satisficd subgoals within their application, but that restore all previous subgoais to
their satisficd states by the end of the macro, and satisfy an additional subgoal as well. The macros
arc stored in a two dimensional table, called a smacro table, in which cach column of the table contains
the macros nccessary to satisfv a particular subgoal. The subgoals arc solved one at a time, by
applying a singlc macro from cach column of the table. The Macro Problem Solver generates very
cfficient solutions to several classical problems, some of which cannot be handled by other weak
methods. The cxamples include Rubik’s Cube, the Eight and Fiftcen Puzzies, the Think-a-Dot

problem, and the Towers of Hanoi problem.

1.2.4. Chapter 5: Learning Macro-Operators

The question of how macros arc learned or acquired is the subject of Chapter 5. The simplest
technigue is breadth-first scarch. However, by using a technique related to bidirectional search, the
depth of the scarch can be cut in half. Finally, cxisting macros can be composed to find macros that
arc beyond the scarch limits. These techniques are sufficient for learning the necessary set of macros
for the cxample problems. In addition, a design for a gencral Aacro Learning Program is presented.
The design clearly separates the problem-dependent componcents of the method from the problem-
independent features. A key property of the learning program is that a/l the macros necessary to

solve any problem instance are found in a single scarch from the goal state.
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1.2.5. Chapter 6: The Theory of Macro Problem Sollving

Chapter 6 explains the theory of macro problem solving and characterizes the range of problems
for which it is cffective. The theory is presented in two parts: a special case in which a state is
represented by a vector of state variables, and the general theory that encompasses arbitrary state
representations. A necessary and sufficient condition for the success of the method is a new type of
problem structure called operator decomposability. A totally decomposable operator is one that may
affect more than one state variable, but whose cffect can be decomposed into its effect on cach state
variable independently. Thie degree of operator decompusability in a problem constrains the ordering
of the subgoals, ranging from complete freedom in the case of Rubik’s Cube. to a total ordering for
the Towers of Hanoi problem. In addition, further gencralizations of the method are presenteu. Fo.
cxample, we show that in some cascs, ¢fficicnt solution strategics can be Icarncd based on randomly

gencrated subgoals!

1.2.6. Chapter 7: Performance Analysis

An analysis of the performance of the problem solving and learning programs is presented in
Chapter 7. The performance measures include the number of macros that must be stored for a given
problem. the amount of time required to learn the macros, and the length of solutions gencrated in
terms of number of primitive moves, both in the worst casc and the average case. The first result is
that the total number of macros is the sum of the number of macros in cach column whereas the
number of states in the space is the product of these values. The total learning time for the macros is
shown to be of the same order as the amount of time required to find a solution to a single problem
instance without the macros. Finally, if there are N subgoals to a problem, the solution length
gencrated by the Macro Problem Solver is less than or cqual to N times the optimal solution length,
in the worst case. In addition, an average casc analysis of solution length is found to agree with
cxperimental results for the 2x2x2 Rubik's Cube. Furthermore, for the Eight Puzzle and the full

3x3x3 Rubik’s Cube, the solution lengths generated by the Macro Problem Solver are close to or

shorter than those of an average human problem solver, An important feature of this analysis is that

cach performance parameter is expressed in terms of a corresponding mcasure of problem difficulty,
rather than problem size. For example, the worst-case solution length is expressed in terms of the

optimal solution length.
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1.2.7. Chapter 8: Reflections and Further Work

Several observations and dircctions for future rescarch are presented in Chapter 8. First, the
sclection of subgoals and their ordering are two parameters of the Macro .carning Program whose
automatic generation requires further rescarch. Next, we show that the Macro Problem Solver can be
combined cffectively with other problem solving mcthods such as operator subgoaling, macro
generalization, and problem decomposition. to solve problems that no single technigue could solve
alone. In addition, we argue that given an ordered set of subgoals for a problem. the difficulty of the
problem is related to the maximum distance between two successive subgoals, in terms of number of
primitive moves. Next, we propose that macro-operators arc an important representation for
knowledge, based on a bricf look at the domains of thcorem proving and computer programming,
and a detailed examination of the domain of road navigation. Finally, an exploration of the utility of
macros in arbitrary problem spaces suggests that scarching for macro-operators may be a fairly

general learning paradigm.

1.2.8. Chapter 9: Conclusions

Chapter 9 presents the conclusions of the thesis. They include the finding that the macro icarning
and problem solving techniques constituic a valuable addition to the collection of weak methods, the
idca that macro-opcrators are an important representation for knowledge, and the suggestion that

scarching for macros may be a uscful paradigm for learning.
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Chapter 2
The Need for a New Prcblem Solving Method

The purpose of this chapter is to demonstrate that the cxisting collection of weak methods is
incomplete. There cxists a problem, namely Rubik’s Cube, that cannot be solved cfficiently by any
of the current stock of weak methods. Yet, people can solve it, and cven Icarn to solve it, quite
efficiently. Hence, another method must underly the solution of this problem. In addition, we will
arguc that for other rcasons as well, Rubik’s Cubc is an cxcellent domain for studying problem

solving and learning,.

2.1. Problem Description: 2x2x2 Rubik’s Cube

Figure 2-1 shows a 2x2x2 version of the celebrated Rubik's Cube, invented by Erno Rubik in 1975,
The puzzle is a cube that is cut by threc plancs, one normal to cach axis, scparating it into cight
subcubes, referred to as cubies”. The four cubies on cither side of cach cutting plane can be rotated in
cither direction with respect to the other four cubics. Note that these rotations, called twists, can be

made along cach of the three axes. The twists can be 90 degrees in cither direction or 180 degrees.

a4

/
Vv

Figure 2-1: 2x2x2 Rubik’s Cube

2'I‘he terminology used here is standard in the literature of Rubik’s Cube [Frey 82],
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“ach of the cubices has three sides facing out, called facelets, cach a different color. In the goal state
of the puzzle, the four facclets on cach side of the cube arc all the same color, making six different
colors in all, one {or cach side of the cube. The cube is initialized by performing an arbitrary serics of
twists to mix the colors on cach side. The problem then is to solve the cube, or find a sequence of

twists that will restore the cube to the goal state, i.¢. cach side showing a single color.

The 2x2x2 cube is a simpler version of Rubik’s original cube. The original is a 3x3x3 cube with two
plancs of rotation cutting cach axis (sce Figure.2-2). The 2x2x2 cube is a subproblem of the 3x3x3
cubc: it is isomorphic to a restriction of the full cube in which only the cight cubics on the corners are
considered. In other words, if one ignores the interior edge and center cubics of the 3x3x3 cube, then

the problem reduces to the 2x2x2 cube. Both problems will be considered in this thesis.

ST 7
ST

%

%
%
%

4
/

-

Figure 2-2: 3x3x3 Rubik’s Cube

2.2. Rubik’s Cube as a Domain for Probiem Solving and Learning
Research

There are several rcasons why Rubik’s Cube is an excellent domain for rescarch on problem

solving and particularly on learning problem solving strategies.

First, note that there are two levels of tasks associated with the cube. One is the task of given a
particular initial configuration, find a scquence of twists that will restore it to the goal state. 'This is
the problem solving task. The other is the lcarning task of acquiring a strategy that will solve the
cube from an& initial state. The reason for this distinction is that the puzzle is really a collection of a

very large number of probiem instances, one for cach possible initial state?,

3'1"he term “solution” is used to refer to a sequence of primitive moves that maps a particular initial state to a particular goal
state. The term "strategy” refers to an algorithm that will generate a solution to any problem instance.
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An obvious rcason for studying Rubik’s cube is that the problem is well structured yet very
difficult. Since the states and operators are clearly specified and casily represented, one can casily
construct a problem space for the problem. "That the problem is genuinely difficult is attested to by
the phenomenally large number of people who have unsuccesstully worked on scrambled cubes. The
published strategics to the problem are all fairly complex in the sense that it is considered a
significant achicvement to lcarn one of them. Furthermore, the problem of discovering a strategy is
cven more difficult. Most people who try it never succced, and those who do succeed typically

requirc scveral weeks to scveral months of effort.

Not only does it take a long time to learn a strategy, but progress toward it is incremental and
obscrvable. Many problems are difficult and require a long time to solve, but the solution, once
discovered, becomes apnarent instantancously. !n Rubik’s Cube, progress toward a strategy occurs
throughout the learning process and can be measured in terms of the number of cubies that can be
correctly positioned relative to the goal state. [n addition, it is usually clear what picces of knowledge
arc being acquired during the learning. These features of the problem make it an idcal domain for

studying the learning of problem solving strategics.

Finally, the most compelling reason for studying Rubik’'s Cubc is the fact that it cannot be solved
cfficiently by any of the current stock of weak mcthods. After describing alprublcm space for the

2x2x2 cube, evidence supporting this claim will be prescented.

2.3. Problem Space

This scction presents a problem space for the 2x2x2 cube by describing a data structure to represent
a state or configuration of the cube, and giving a procedural implementation of cach of the primitive
opcerators of the puzzle. In general, the task of going from a problem description to a representation
of the problem is complex, and if donc cleverly can result in a vast reduction in probletn solving
cffort. In this case. however, the representation is based on relatively straightforward observations

and doces not significantly reducc the difficulty of the problem.

2.3.1. State Representation

The primary issuc in generating a problem space for any problem is designing a data structure to
represent a state of the problem. Perhaps the most obvious state representation would be to list in
some order the colors that appear on cach facelet of the cube. However, the choice of a facelet as a

primitive results in an incfficient representation. The reason is that the facclets are physically
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constrained o occur in fixed groups of three by virtue of being attached to particular cubies, which
move as units.  Incorporating this constraint dircctly in the representation gives rise to a more

cfficient representation.

By choosing a cubic as the primitive of the representation, we are led to represent a cube
configuration as a permutation of the cubies among the different positions. or cubicles, that the cubics
can occupy. Inaddition, a particular cubie can exist in the same position but with its colors twisted in
any of three different orientations, one corresponding to cach facelet of the cubie. The three
oricntations will be labelled 0, 1, and 2. The orientation is determined by examining the unique
facclet of cach cubie that faces cither up or down in the goal state of the cubie. Its orientation is the
number of 120 degree clockwise rotations of the cubie about an axis from the center of the cube
through the corner of the cubic which would map the up or down facelet from the top or bottom side

of the cubc to its current position,

Thus, cach cubic must be represented by both its position and its oricntation. This suggests an
cight clement array of cubics, where cach clement encodes both the position and the orientation of
the cubie. Note that there also cxists a dual representation, where cach clement corresponds tw a
cubicle and the valuc cncodes the cubic that occupics it along with its orientation. However, the

former wiil be used throughout.

For cconomy, we do not want to consider siates that differ only by a simple rotation of the cntire
cube as diffcrent. This is accomplished by defining a canonical orientation of the cube. A canonical
orientation is obtained by picking a particular cubic and fixing its position and oricntation. Each
opcrator can then be viewed as a twist followed by a rotation of the entire cube to restore the fixed
cubie to its canonical position and oricniation. Another way of looking at this is that since cach twist
rotates half the cubics with respect to the other half, cither half can be viewed as fixed and the other
half as rotating. When all three planes of rotation are considered, a single cubie can be considered as
permancntly fixed. In cither case, the cffect is that only seven cubics are movable, and only three

faces can be twisted, without loss of generality.

The cutics have three letter names which represent the three planes which intersect at the goal
position of the cubic. The pilancs are labetled Up, Down, Left, Right, Front, and Back. Hence, the
complete set of cubies is {ULF, ULB, URF, URB, DLF, DLB, DRF, DRB}, with DLB being the
fixed cubie.
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2.3.2. Operator Implementation

Given a representation of the state of the cube, an implementation of the twists or operators of the
cube arc casily derived. Each individual operator is represented by an array of 21 e¢lements, one for
cach possible combination of seven cubicles and three orientations for a cubic. The valuc of a
particular element encodes the position and orientation that a cubic would be mapped to by that
operator, given that it was in the position and orientation that corresponds to the array clement. In
other words. the opcerator array scrves as a mapping function from the previous values of the cubics
to the values resulting from the operator application. To apply an operator, the values of cach of the
seven cubics must be mapped to their new values. Note that cubics occupying cubicles that arc
unaffected by a particular operator will remain unchanged. There is a separate operator array for cach
individual operator. Sincc there are three faces to be twisted, and cach face can be twisted 90 degrees
clockwise, 90 degrees counterclockwise, or 180 degrees, there are ninc primitive operators in all.
They arc labelled by the first letter of the plane that they rotate. By convention, a 90 degree clockwise
twist of a planc is represented simply by the first letter of the piane, a 90 degree counterclockwise
twist is indicated by the letter followed by a minus sign, and a 180 degree twist by the letter followed
by a 2. The completc set of primitive moves for the 2x2x2 cube is thus
{U,U-, U2, R, R-, R2. F, F-, F2}.

Table 2-1 shows the cffect of cach operator on the positions of cubics, while Table 2-2 shows the
effect of the operators on the orientation of the cubies. Note that twists of the Up face leave
orientation invariant. Similarly, 180 degree twists do not ecffect orientation. The effect of the

remaining operators on oricntation depends on the initial position of the cubie.

OPERATOR EFFECT
U URF>ULF, ULF>ULB, ULB>URB, URB>URF
u2 URF>ULB, ULF>URB, ULB>URF, URBM>ULF
u- URF>URB, ULF>URF, ULB>ULF, URB>ULB
R URF>URB, URB>DRB, DRF>URF, DRB>DRF
R2 URF>DRB, URB>DRF, DRF>URB, DRB>URF
R- URF>DRF, URB>URF, DRF>DRB, DRB>URB
F URF>DRF, ULF>URF, DLF>ULF, DRF>DLF
F2 URF>DLF, ULF>DRF, DLF>URF, DRF>ULF
F- URF>ULF, ULF>DLF, OLF>DRF, DRF>URF

Table 2-1: Effect of operators on positions of cubics for 2x2x2 Rubik's Cube
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OPERATOR INITTAL POSITION EFFECT
R URF or DRB 0>1, 1>2, 2>0
R URB or DRF 0>2, 1>0, 2>1
R- URF or DRB 0>1, 1>2, 2>0
R- URB or DRF 0>2, 1>0, 2>1
F URF or DLF 0>2, 1>0, 2>1
F ULF or DRF 0>1, 1>2, 250
F- URF or DLF 0>2, 1>0, 2>1
F- ULF or DRF 0>1, 1>2, 2>0
Table 2-2: Effect of operators on orientation of cubies for 2x2x2 Rubik’s Cube

2.4. Brute Force Search

Given a problem space for Rubik’s Cube, we could solve it using brute force scarch. We would
cxpect a breadth-first scarch to look at about half the states in the spacce, on the averuge, before

finding a solution.

The Zx2x2 cube has 3,674,160 distinet states. This number comes from the product of 71, for the
permutations of the cubie positions, with 37, for the orientations of the cubies. This valuc is then
divided by three because the total state space is composed of three different. disconnected
componenis. Thus, brute force scarch is impractical for a human, but is quite practical for a

computer.

Howcver, when we consider the 3x3x3 Rubik’s Cubc, the number of states grows to approximately
4*10Y Even at a million twists per second, it would take a computer an average of 700,000 years to

solve the cube with brute force search. Hence, another technique must be used.

2.5. Means-Ends Analysis

Note that the goal state of Rubik’s Cube is naturally expressed as a conjunction of subgoals such as
"get the colors on cach face to match”, or "get cach cubic to its correct position and orientation.” This
suggests setting up a sequence of subgoals and using means-ends analysis to solve them ong at a time.
The General Problem Solving (GPS) program of Newell and Simon [Newell 72] implements means-
cnds analysis, in conjunction with with other problem solving tcchniques such as opcrator
subgoaling. A necessary condition for its applicability is that there exist a sct of subgoals and an
ordering among them, such that once a subgoal is satisfied, it nced never be violated in order to

satisfy the remaining subgoals [Ernst 69]. A set of subgoals with this property is called serializable.
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Unfortunately. Rubik’s Cube docs not satisty [hi.§ condition. A few minutes of cxperimentation -
with the cube reveals the aspect of the problem that makes it so difficult and frustrating. In particular,
once some of the cubics are put into place, in general they must be "messed up™ in order to position
the remaining cubies correctly. All of the published solutions to the problem, of which there are
many, share this featurce of violating previously solved subgoals, at least temporarily, in order to solve

additional subgoals.

1o be precise, there are several technical qualifications that must be attached to the claim that
Rubik’s Cube does not satisfy the applicability condition for GPS. One is that for the degencrate case
where we assume only a single subgoal which is the main goal, the condition is vacuously satisfied:
once this subgoal is satisticd, it nced not be violated in order to satisfy the main goal. Unfortunately,

this formulition makes no contribution to the solution of the problem,

A morc interesting cavceat is that there cxists a relatively long sequence of subgoals that do satisfy
the GPS condition. First, we partition the complete sct of states into the set of states that are a
minimum of onc move from the goal, the states that are a minimum of two moves from the goal,
three moves, ctc. The subgoals are then of the form, "move from the current state to a state which is
one move closer to the goal.” These subgoals are well defined and can be solved sequentially without
ever violating a previous subgoal. The difficulty is that we don’t have any method for computing
these scts other than brute force search. and cven if we could compute them, we don't have any more

cconomicul representation of them than an exhaustive table.

Hence, we must modify our claim to say that means-¢nds analysis, in its current form, offers no

practical benefit for solving Rubik’s Cube,

2.6. Heuristic Search

Even though we do not have a set of scrializable subgoals, there may be a heuristic evaluation
function that. though not guaranteed to vary monotonically toward the goal, may nevertheless offer a
uscful cstimate of problem solving progress. A hcuristic evaluation function is a function that is
relatively cheap to compute from a given state, and that provides an cstimate of the distance from
that statc to the goal. Most of the weak methods except for generate and test (which provides no
problem solving power) rely on such a function, cither cxplicitly or implicitly. For example, the
evaluation furction is the cssence of simple heuristic scarch. Hill-climbing requires an evaluation
function that, in addition, must be monotonic. If we view the number of subgoals remaining to be
satisfied as an cvaluation function, then even means-ends analysis uses an cvaluation function, which

must be monotonic as well,
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The usefulness of an evaluation function is dircetly related to its accuracy in estimating the distance
to the goal. In an cffort to find a usctul heuristic for Rubik’s Cube. several plausible candidates were
tested experimentally to determine their accuracy. The surprising results were that none of the

heuristics tested produced values that had any correlation at all with distance tfrom the goal!

The basic ideca of the experiment is to compute the average distance from the goal state for all the
states that produce a particular value of a given ¢valuation function. The 2x2x2 Rubik's Cube was
used to allow cvery state of the problem space to be cvaluated. The first step of the experiment was to
conduct a breadth-first scarch of the entire space, gencrating a table which lists the minimum
distance of cach state to the goal state. The maximum distance of any state from the goal is 11 moves,

and the average distance over all states is 8.76 moves.

The next step was to identify plausible evaluation functions, which resulted in four fairly obvious
oncs. The first heuristic function is simply the number of cubics that arc in their goal positions and
orientations.  Counsidering position and orientation independently, the second function awards one
point for a cubie in its goal position, one point for a cubic in its goal oricntation, and two points for
both. Reasoning that the position of a cubic relative to its ncighbors in the goal stale is more
important than absolute position, the next heuristic counts the number of pairs of adjacent cubies
that atc in the correct position and orientation relative to cach other. without regard to their global
position or oricntation. Taking into account the distance of a cubic from its goal position, the final
cvaluation function determinges the minimum number of moves required to correctly position and

oricnt cach cubic independently, and sums these values over all the cubies.

The results of the experiments are presented as a sct of graphs, one for cach cvaluation function
(see Figures 2-3 through 2-6). In cach case, the x-axis of the graph corresponds to the different values
produced by the function. The y-axis of the graph corresponds to the actual distance from the geal
statc. Each data point gives the average distance from the goal state for the set of states which

produce a particular valuc of the cvaluation function.

‘The results show that in general, the average distance from the goal of a sct of states sharing a
particular heuristic value is within 10% of 8.76, the average for the entire state space. his result holds
across almost all values of all the cvaluation functions. The only significant deviation from this norm
is that the states whose evaluations are closcst to that of the goal state are in fact further from the goal
than the average state! However, none of the evaluation functions identify a sct of states that are

cven a single move closer to the goal state, on the average.
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This implics that none of the above heuristics are of any direct use in solving the 2x2x2 Rubik’s
Cube. Attempts to use these heuristics to reduce the amount of scarch required for the 3x3x3 cube
were unsuccesstul as well.  Since these heuristics were the best we could come up with, we may
conclude that if there docs exist a uscful heuristic, its foim is probably quite complex, the limiting
case being the heuristic of imoving one step closer to the goal. 1'urthermore, none of the literature on
the cube suggests any other cvaluation functions. All this evidence suggests that heuristic evaluation

functions are not in fact used to solve this problem.

2.7. Conclusion

Rubik’s Cubc is an cxample of a problem that cannot be solved cefticienty by any of our current
problem solving methods, including means-cnds analysis and heuristic scarch, yet can be solved
cfficiently by people. Hencee, another method must be involved. The clucidation and analysis of that

method is the subject of this disscrtation. .
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Chapter 3
Previous Work

‘This chapter reviews previous work that has contributed to or is refated to the development of the
Macro Problem Solver. It includes work on changing representations in problem solving, GPS and
the work of Ernst and Goldstein on lcarning differences. research on non-serializable subgoals in the
context of the blocks world, the development of the idea of macro-operators, the ideas of Bancrji for

using macros to deal with non-scrializable subgoals, and work on permutation groups.

3.1. Change of Representation

The present work originated in attempts to understand the process of changing representations in
problem solving [Korf 80]. The reason for changing the representation of a problem is to find a more
cfficient strategy for solving the problem. The goal of this rescarch was to take a given representation
for a problem, and dutoma[ically construct a new representation in which problem solving is more
cfficient. It was found that two types of representation changes that produce large efficiency gains
arc the identification of uscful differences or subgoals in the space, and the addition of macro-
opcrators to the set of primitive operators. In these contexts, the problem of automatically deriving

improved representations becomes onc of learning good differences or of acquiring uscful macros.

3.2. Learning Differences for GPS

Included in the work of Ernst and Goldstein on “Mechanical discovery of classes of problem
solving strategies” [IZrnst 82] is an approach to lcarning subgoals. Ernst and Goldstein investigated
two different types of problem solving strategics: the General Problem Solver of Newell and
Simon [Newecll 72], and strategics for playing two-person games similar to Nim. We will restrict our

attention to the GPS component of their work.

As described in the previous chapter, GPS solves a problem by using an ordered sct of differences

and removing them one at a time, such that the main goal can be rcached without reintroducing a
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previously removed difference. The originel version of GPS required that the differences and their
ordering be provided by the user in the form of a difference table. The contribution of Ernst and
Goldstein was to show that these difference tables could be discovered automatically for a range of
problems for which good difterences arc known, cffectively learning an efficient strategy for the

problem within the GPS paradigm.

An important feature of Ernst and Goldstein’s program is that it is able to construct complex,
non-obvious differences  for probicms. For cxample. consider the Fools Disk  problem
(sec Figurce 3-1) which consists of four concentric disks with cight numbers cvenly spaced around
cach disk. Fach of the disks can be rotated independently, and the goal state of the problem is onc in
which cach of the cight radial rows of four numbers sum to 12. The obvious subgoals of getting the
radii to sum to 12 onc at a time arc not scrializable, regardless of their ordering. Hence, Goldstein's
program constructs a more complex series of three subgoals: first get the sixteen numbers on the
horizontal and vertical radii to sum to 48, which implics that the sum of the diagonal radii also must
sum to 48, then get cach ofthé four diamecters to sum to 24, and then finally get cach radius to sum to
12. In order to make these subgoals serializable, after the first subgoal is achicved, only 90 degree
rotations of the disks are allowed, since these moves leave invariant the total sum of the horizontal
and vertical radii. Similarly, after the sccond subgoal is achicved, only 180 degree rotations are
considered, since these moves leave the sums of the diameters invariant. Thus, these subgoals are
both scrializable and cffective for solving the problem. [t is interesting to note that if the problem is
formulated with only 45 degree rotations as primitive operators, then the 90 and 180 degree rotations

in this strategy become macro-operators.

The development of the Macro Problem Solver owes several intellectual debts to GPS and to Ernst
and Goldstein's work. Its structure borrows hcavily from that of GPS, to the extent that the Macro
Problem Solver is actually a gencralization of GPS to include macro-operators in addition to
primitive operators. In addition, the work of Ernst and Goldstcin provided the paradigm of lcarning
by the discovery of parameters to a particular problem solving method, a paradigm that is followed in
the Icarning of macros. Finally, the observation that the Eight Puzzie was not included as one of
Ernst and Goldstcin’s cxamples, and the conclusion that no good set of GPS differences existed for
that problem, provided the original motivation for investigating the class of problems for which GPS
is not applicable. In fact, the one problem that Ernst and Goldstein's program was unsuccessful in
finding good diffcrences for, the Think-A-Dot problem, is included as onc of the Macro Problem

Solver examples in the next chapter.
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Figure 3-1: Fool's Disk problem

3.3. Non-Serializable Subgoals

The problem of non-serializable subgoals was studied in the context of the blocks world by a
number of rescarchers in the carly 1970s. Sussman's HACKER program [Sussman 75] deals with
problems of building stacks of blocks represented by sets of conjunctive subgoals of the form
(On X Y), where X and Y are blocks. There arc two operators that can be applied: (Cleartop X),
which removes all blocks from the top of block X, and (Puton X Y), which places biock X directly on
top of block Y, assuming both their tops arc clear. HACKER.works by initially assuming that the
subgoals can be achicved independently and then explicitly invoking a sct of "debugging”
mechanisms to deal with intcractions betwceen the subgoals. For cxample, given a sequence of
subgoals that cannot be solved sequentially, the simplest approach is to try to recorder the subgoals

into a sequencc that can be sequentially soived.

However, there exist blocks-world problems that cannot be solved sequentially by any ordering of
the subgoals. For example, the well-known "Sussman Anomaly™ [Sussman 75), illustrated in Figure
3-2, involves transforming the situation (On C A) to the situation (On A B) and (On B Q).
Attempting to solve the subgoals in cither order results in a state in which the sccond subgoal cannot

be solved without violating the first.
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A
C B
A B C

Figure 3-2: Sussman Anomaly

Sussman's HACKER can solve this problem onlv by running in an anomalous modc in which
subgoals are not protected. Furthermore, the result is @ non-optimal solution such as: (Cleartop A),
(Puton A B), (Cleartop B). (Puton B C), and (Puton A B), whercas an optimal solution is:
(Cleartop A), (Puton B C), and (Puton A B).

Shortly after Sussman’s work, Warren, Tate, and Waldinger all arrived at cssentially the same
technique for gencrating optimal plans for such problems. Warren [Warren 74] noted that the key to
the optimal solution to the Sussman Anomaly is that the action that solves the sccond subgoal occurs
between the two actions that solve the first subgoal. Tate’s system [Tate 75] potentially reorders all the
subgoals gencrated to solve a problem, including subgoals to satisfy opcrator preconditions, as
opposed to just the top level subgoals. Waldinger [Waldinger 81], working in the domain of program
synthgsis, generates a plan to solve onc subgoal and then insert actions within the body of the plan to
solve successive subgoals without violating previous subgoals. Sacerdoti [Sacerdoti 75) generalizes
these approaches to represent a plan as a partial order of actions and uses the principle of least

commitment to avoid problems caused by arbitrary ordering of the actions.

There arc several limitations to this body of work in dealing with non-serializable subgoals. One is
that most of these systems, with the exception of that of Manna and Waldinger, simply rcorder the
primitive actions necessary to achicve cach of the subgoals independently, without the capability of

adding new actions to deal dircctly with subgoal interactions [Sacerdoti 75]. A second limitation is
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that these techniques only work on problems for which independence of subgoals is a good first
approximation [Sussman 75). Finally, we note that the subgoal intcraction in the blocks world is not
an inherent property of the domain but rather an artifact of the particular subgoals chosen to
decompose a goal. In particular, if we simply add a subgoal of the form (On X "Table) where X is the
bottom-most block of a stack, then all the block stacking problems could be solved by GPS simply by
first putting the bottom block on the table, then the next higher block, and so on until tive top block is
placed on twp of the stack. For these reasons, it scems unlikely that these methods would be powerful

cnough to deal with the complexity of subgoal interactions manifested by Rubik’'s Cube.

3.4. Macro-Operators

The idea of composing a sequence of primitive operators and viewing the sequence as a single
opcrator goces back as Icast as far as Saul Amarel's 1968 paper oa represcntations for the Missionaries
and Cannibals problem [Amarel 68]. He notes that the introduction of macros drastically reduces uie
cffective size of the scarch space, resulting in a solution with practically no scarch. He also notes the

analogy between macros in a problem space and well-chosen leinmas in a mathematical system.

The first implementation of this idea is the use of MACROPS [Fikes 72] in the STRIPS problem
solver. The main contributions of this werk with respect to macros are the powerful mechanisms for
gencralizing macros. In particular, macros can be paramcterized by replacing constant arguments

with variables, and are stored in a form that allows arbitrary subscquences of a macro to be applied.

There are scveral features of the work on MACROPS that distinguish it from the rescarch reported
herc. The most important is that MACROPS arc not used to overcome the problems of non-
scrializable subgoals but rather to improve the cfficiency of the STRIPS probiem solver in a domain
for which there cxists a good set of GPS differences. The robot problem solving domain of STRIPS
consists of a robot and a set of boxes distributed among a collection of connected rooms, and poses
problems of moving boxes between rooms. Like the blocks world, an effective set of ordered subgoals
can be sct up for these problems. For example, first move the robot to the room containing the box to
be moved, then move the box to its destination, and finally move the robot to its final destination. In
fact, by using such a sct of scrializable subgoals, the LAWALY syitem of Siklossy and
Druessi [Siklossy 73] was able to solve the same problems more than an order of magnitude faster
than STRIPS with MACROPS. The fact that STRIPS with MACROPS performs so incfficiently in
this simple domain suggests that the system is not powerful cnough to handle more complex

domains.
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A sccond limitation of 3 ERIPS with MACROPS s that .il docs not generate a complete sct of
macros. MACROPS arc gencrated by using the solutions to particular problems posed to the system,
and scrve to reduce but not climinate the amount of scarch required on future problems. The
questions of what problems to use in a training scquence, and how much scarch is still required to
solve problems chosen from some population given a sct of MACROPS, arc difficult and left
unanswered. By contrast, the Macro Problem Solver works from a complete sct of macros that

climinate scarch cntirely.,

The idea of separating a learning stage for acquiring macros from the problem solving phasc is
implemented in the REFLECT system of Dawson and Siklossy {Dawson 77]. ‘Their system has a
preprocessing stage where macro-operators, called BIGOPS, arc generated by comparing the
postconditions of cach primitive operator with the preconditions of all possible successor operators,
creating a two-operator macro whenever they match. This results in a relatively small st of macros
which arc independent of any particular problems to be solved. Unfortunately, this approach is
limited to very short macros or to operator scts where the preconditions severely constrain the

possible operator scquences,

3.5. Macros and Non-Serializable Subgoals

The fact that macro-operators can be used to overcome the problem of non-serializable subgoals
was first suggested by Banerji [Banerji 83). He points out that both Rubik’s Cubc and the Fifteen
Puzzle cannot be solved by a straightforward application of GPS, but that an cxtension of GPS to
include macros would be able to solve thesc problems. For example, in both the Eight and Fifteen
Puzzles, when the next to last tile in a row is correctly placed, in general it must be moved in order to
place the last tile in that row, hence vi«)l;it'mg a previously satisfied subgbal. Banerji suggests that at a
given stage of a strategy. the macros that are uscful are ones that leave all previously satisfied subgoals
intact while satisfying an additional subgoal as wcll. He also nntes that within the body of a macro, a
previous subgoal may be violated, but by the ¢nd of the macro, the subgoal must be restored.

Banerji's work was independent of and concurrent with this rescarch.,
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3.6. Permutation Groups

Given that macros may be useful for solving problems with non-serializable subgoals, the issue of
exactly what macros are neccssary and how to use them in an efficient strategy must be addressed. A
solution to this problem is suggested by the work of Sims [Sims 70] on computational problems of
permutation groups. The goal of that rescarch, and related work by others, is to be able to represent a
permutation group compactly so that questions such as the ordcr of the group and membership in the

group can be answercd efficiently.

A permutation group of degree n is a subset, not necessarily proper, of all permutations of n
elements which is closed under the operation of composition. For exampie, consider Rubik’s Cube
and define two macro-operators to be equivalent if and only if both macros have the same effect on
all states. Then, since each macro permutes the positions and orientations of the cubies, and any
macro can be composed with any other to yicld another macro, the collection of equivalence classes
of macros for Rubik’s Cube form a permutation group. The representation for permutation groups
proposed by Sims is an nXn matrix of permutations. Table 3-1 shows an example of such a matrix for
the permutation group on 5 elements. All the permutations in the ! column of the matrix leave the
first i—1 elements of the permutation invariant. The permutation in the /# row of the i** column
maps the j element to the i position.

1 2 3 4 5
1 (123 45)

2 (21345) (12345

~

3 (31245)(13245) (123 45)
4 (41235)(14235)(12435) (12345)

5 (51234) (15234) (12534) (123524)(1234S5)

Table 3-1: Permutation matrix for permutation group on S clements.

Sims also addresses the issue of how to compute these permutations, given a set of generators of the
group, or primitive permutctions. The technique relies on the observation that if permutation A
leaves the first i— 1 elements invariant and maps the j* clement to the i position, and permutation B
has the same property, then A composed with the inverse of B will leave the first i elements invariant.
Using this fact, Sims implemented an algorithm to fill in the permutation table. Furst, Hopcroft, and

Luks [Furst 80] later showed that the complexity of a similar algorithm is a polynomial of order n$




20 l.carning to Solve Problems by Searching tor Macro-Operators

4 .
where 18 the number of elements permuted. Knuth™ reduced this upper vound to #° logn, and

Jerrum [Jerrum 82] further reduced it to #* for a slightly different represcutation.

As we will see in the next chapter, replacing the permutations in such a table with corresponding
sequences of primitive operators gives rise to an cffective strategy for solving permutation problems.
There arc two limitations, however, to this work from the point of view of general problem solving,
One is that it refers only to permutation groups and must be extended to apply to a broader class of
problems. For ¢xample. cven though the states of the Eight Puzzie are permutations of the tiles, the
operator sequences of the problem do not form a group because arbitrary operator sequences cannot
be composed. The reason is that the position of the blank at the end of the first sequence must match
the position of the blank required at the start of the second. Similarly, precondit.ons on the operators
in the Towers of Hanoi problem preclude the composition of arbitrary operator sequences. In the
casc of the Think-a-Dot problem, there are no operator preconditions. and the problem docs form a
permutation group, but only in the sense that thé operators permute the states of the problem. The
Sims representation is worthless for this problem since the size of the table is O(n®) where n is the
anumber of clements being permuted. Thus, the representation is only usceful when the number of

clements to be permutced is small relative to the number of states in the problem space.

The second limitation of this work is that the technique used to fill in the permutation table results
in extremely inefficient solutions, relative to human strategics, in terms of number of primitive
moves. [n general, the permutations in a particular column of the table arc produced by composing
two permutations from the previous column. If we replace permutations by macros, this doubles the
length of the macros in cach successive column. Thus, some macros may be as long as 27 primitive
moves long, where 2 is the number of elements permuted. In the case of the 3x3x3 Rubik’s Cube,

macros can be as long as 217 primitive moves.

While various group identitics could be applied to reduce the lengths of the macros, the application
of these identities is heuristic in nature and hence is not guaranteed to yicld optimal macros.
IFollowing a different approach, Driscoll and Furst [Driscoll 83] have shown that fer permutation
groups whose generators are composed of cycles of bounded degree, solution lengths are O(n?).
However, their algorithm would also gencrate incfficient solutions, relative to human strategies, due

to the large constant factors involved.’

4personal communication from Donald Xnuth to Eugene Luks, May 1981.

5personal communication with James Driscoll,
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3.7. Conclusion

In conclusion, we find that many of the main ideas in this thesis can be {ound in one form or
another in the litcrature of problem solving. The basic structurce of the problem solver comes from
GPS, the idea of learning by discovering parameters to a problem solving method was developed by
Ernst and Goldstein, the study of non-serializable subgoals was pionecred in the blocks-world, the
usc of macro-operators dates from STRIPS, Banerji independently discovered the application of
macros o non-scrializable subgoals, and the structure of macro tables is borrowed from work on
permutation groups. The novel contributions of this thesis are the combination of these ideas into a
fairly genceral problem solving and lcarning method, and a precise theory of the applicability and

performance of the technique.




28

L.carning to Solve Problems by Scarching for Macro-Operators




The Macro Problem Solver _ 29

Chapter 4
The Macro Problem Solver

This chapter describes the operation of the Macro Problem Solver and gives several examples of its
use. Briefly, the problem solver achieves an ordered set of subgoals onge at a time by applying macros
that solve the next subgoal while leaving previously solved subgoals intact, even though they may be
temporarily violated during the application of the macro. We describe a problem representation, the
structurc of.thc table of macros, and the probiem solving algorithm. The issue of how the macros are
lcarned Will be deferred to the F()Ilowing.chaptcr. The collection of cxamplces includes the Eight and
Fifteen Puzzles, Rubik’s Cube, the Think-A-Dot problem, and the Towers of Hanoi problem. For

simplicity of exposition, the Eight Puzzle will be used as the primary cxample.

The Eight Puzzie (sce Figure 4-1) has been studied extensively in the artificial intelligence
literature [Schofield 67, Gaschnig 79, Ericsson 76] and provides onc of the simplest examples of the
opcration of the Macro Problem Solver. It consists of a three by three frame which contains cight
numbered square tiles. One of the squares of the frame is cmpty: this is referred to as the blank tile or
blank. Any of the tiles horizontally or vertically adjacent to the blank can be moved into the blank
position. The problem is to take an arbitrary initial configuration of the tiles and to transform it into a

goal statc, such as that shown in the figure, by sliding the tiles onc at a time.

1 2 3
8 4
7 6 5

Figure 4-1: Eight Puzzle goal state




30 L.carning to Solve Problems by Searching for Macro-Operators
4.1. The State-Vector Representation

We begin with an ubstract representation of our example problems. A state of a problem is
specitied by the values of a vector of state variables.  Banerji [Bancrji 83] argues that this
representation is natural and very general. For example. the state variables for the Eight Puzzle arc
the nine different tiles of the puzzle, including the blank, and the values are the positions occupied by
cach tile in a particular state. For Rubik’s Cube, the variables are the different cubices, and the values
encode both the positions of the cubics and their orientation. In the case of the Towers of Hanoi, the
vartables arc the disks, and the values arc the pegs that the disks arc on. IFor cach problem, a single

goal state is specificd by assigning particular values to the state variables, called their goal values.

Note that a dual representation cxists for these problems, and may in fact seem more intuitive to
the reader. For cxample, in the Eight Puzzie the variables could correspond to the positions and the
values could represent the tiles which occupy the positions. The two representations are cquivalent,
but we will deal with the former. The reason is that the macro problem solving technique is sensitive
to the representation of the problem and in general will not work in the dual representation, as will

be discussed in Chapter 6.

4.2. The Macro Table

Table 4-1 shows a macro table for the Eight Puzzle, corresponding to the goal state in Figure 4-1.
‘T'he columns correspond to the tiles and the rows correspond to the tile positions. The labels of the
positions coincide with the numbers of the tiles that occupy them in the goal state. ‘The elements of
the table are macros, which are scquences of primitive moves. A primitive move is represented by the
first letter of Right, Left, Up, or Down, and is the direction that a tile is moved. This notation is
unambiguous since only onc tile, excluding the blank, can be moved in cach dircction from any given

state.

The differences or subgoals used to solve the problem are the obvious ones of placing the tiles in
their correct positions one at a time, or in other words, mapping the state variables to their goal values
scquentially. The first thing that must be decided is the solution order, or the order in which the tiles
are to be positioned. The constraints on solution orders will be discussed in detail in Chapter 6, and
algorithms for sclecting solution orders will be considered in Chapter 8. Roughly, the constraint is
that the applicability and the cffect of any operator on any state variable must be a function only of
that state variable and previous state variables in the solution order. The only constraint on the

solution order for the Eight Puzzle is that the blank be positioned first.
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TTILES
0 1 2 3 4 5 6
0
1 uL
2 U RDLY
3 UR DLURRDLU DLUR
LDRURDLU LORU RDOLLURDRUL

[$1]

DR ULDRURDLDRUL LURDLDRY LORULURDDLUR LURD

N ZO =t uno T
E
-

6 D URDLDRUL ULDORY URDDLULDRRUL ULDR ROLLUURDL DRRUL
7 DL RULDDRUL DRUULDRDLY RULDRDLULDRRUL URDLULDR ULDRURDLLURD URDL
8 L DRUL RULLDORY RDLULDRRUL RULLDR ULDRRULDLURD RULD

The total numher of non-identity macros is 35.
The average case solution length is 39.78 moves.

Table 4-1: Macro table for the Eight Puzzle

The columns of the table correspond to the state variables of the probicm, which are the different
tiles of the puzzle. in solution order from Icft to right. Each column contains the macros necessary 1o
map its corresponding statc variable to its goal value, without disturbing the values of the state
variables that precede it in the solution order. The rows of the macro table correspond to the
different possible values of the state variables, in our case the different possible positions of the tiles.
For cach tile and for each different position of the tile, there is a different macro that will move it to
its goal position while leaving all the previously positioned tiles in their goal positions, independently
of the positions of the remaining tiles in the solution order. More exactly, if the first i—1 state
variables equal their respective goal values, then the macro in column / and row j of the macro table
will map, the value of the i state variable in the solution order from the valuc corresponding to row j
to its goal value. while leaving invariant the valucs of the first i—1 statc variables in the solution
order. For example, the macro in column 3 and row 6, URDDLULDRRUIL, when appliced to a state
in which the blank and tiles 1 and 2 are in their goal positions, will map tl:e 3 (or any other) tile to the

goal position for the 3 tile, while Icaving the blank, 1, and 2 tiles in their goal positions.

Note that in cach column, one of the rows corresponds to the goal value of the corresponding state

variable. Since nothing needs to be done to a state variable that already equals its goal value, we
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& 1)

adopt the convention that these clements of the table contain the identity macro, which has rero
length and o ¢ffect on the state of the problem. Notice also that the macro table for the Eight Puzzie
has a lower triangular form. This is duc to the fact that for this problem, no two state variables may
have the same value, or in other words, no two tiles can occupy the same position. Thus, as inore of
the tiles are placed in their goal positions, there are fewer positions that the remaining tiles can
occupy. Finally. note that the Eight Puzzle macro table ends with the 6 tile instead of the 8 tie. This
is because once the first six tiles are in their goal positions, the remaining two iiles must also be

correctly positioned, or the problem cannot be solved.

4.3. The Problem Solving Algorithm

The algorithm cmployed by the Macro Problem Solver will be described with the aid of the
cxample in Figure 4-2. State « is an arbitrary initial statc for the problem. The first step in the
solution is to ascertain the position of the blank, which is located in the 5 position in state a. This
value is used as a row index into the 0 column of the macro table and the corresponding macro, DR,
is applied. "The effect of the macro is to move the blank to the center position, its goal location. Next, -
the location of the 1 tile in state b is ascertained, position 2 in our ¢xample, this value is used as a row
index into column 1 of the macro table, and the corresponding macro is applied. The effect of this
macro is to move the 1 tile to its goal position, while leaving the blank at its goal position. Note that
during the application of the sccond macro the blank is moved. but by the end of the macro
application, the blank is restored to the center position. Similarly, the position of the 2 tile in state ¢
is used to sclect a macro from column 2 that will map the 2 tile to its goal pesition whilc lcaving the
blank and 1 tiles in their goal positions. Note that in state d, the 3 tile happens to be in its goal
position alrcady and hence the identity macro is applied, as is the case for tile 4 in state e. In general,
for i from 1 to n, if jis the valuc of variable i in the solution order, apply the macro in column i and
row j, and then repeat the process for the remaining variables. Note that the value of variable / above

refers to its value at the i stage of the solution process, and not to its value in the initial state.

This solution algorithm will map any solvable initial state to the given goal state. The algorithin is
deterministic, i.c. it involves no scarch, and hence is very cfficient, running in time proportional to
the number of primitive opcrators that are applied in the solution. [t derives its power from the

knowledge about the probiem that is contained in the macros.

Unfortunately, the actual macro table is dcpendent on the particular goal state that is chosen. The

algorithm can be simply cxtended, however, to allow mapping from any initial state to any goal state,
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113 col 0 61113 col 1 11813 col 2 11213
814117 row 5 4 row 2 8 4 row 7 ) 4
215 DR 21517 RDLU 21517 DRUULDRDLU L&l817

a b c d
11213 col 4 11213 col 5 11213 col 6 11213
6 row 4 5 row 7 7 4 row 7 8 4
51817 51317} ULDRURDLLURD {6]815 URDL 71615

e f g h

Figure 4-2:  Example of solution of Eight Puzzle by the Macro Problem Solver

The idea is to fist find a solution from the initial state to the goal state for which the macro table was
generated. then (ind a solution from the desired goal state to the goal state of the macro table, and
finally compose the first solution with the inverse of the second solution. The inverse of a sequence
of primitive operators is obtained by replacing cach operator with its inverse and reversing the order
of the operators. Hence, if cach of our primitive operators has a primitive inverse, we can use the
Macro Problem Solver to map from any initial statc to any goal state with a penalty of approximately

doubling the solution length.

4.4. Additional Examples

This scction presents several additional examples of macro tables for the Macro Problem Solver.
They include the Fifteen Puzzle, Rubik’s Cube, the Think-A-Dot problem, and the Towers of Hanoi

problem.

4.4.1. Fifteen Puzzle

Siﬁce the size of the state space for the Eight Puzzlc is fairly smali (181,440 statcs), a macro table for
the Fifteen Puzzle was also gencrated to show the power of the technique in larger domains (about
ten trillion states). These macros are listed in Table 4-2, and the corresponding goal state for the
problem is shown in Figure 4-3. While this example provides no new insights into the operation of
the Macro Problem Solver, it does present additional problems to the learning program as we will see

in the following chapter.

col 3
row 3
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13 14 15

Figure 4-3: Fiftcen Puzzle goal state

4.4.2. Rubik’s Cube

For reasons alrcady mentioned, Rubik’s Cube was the primary vehicle for the development of the
Macro Problem Solver. The state variables for this problem are the individual cubices, and the valucs
cncode hoth the positions and the oricntations of the cubies. The subgoals are to position and oricnt

the cubies correctly one at a time. Table 4-3 shows a macro table for the 2x2x2 cube.

Table 4-4 shows a macro mblc for the 3x3x3 Rubik’s Cube. In addition to the cight corner cubics,
there are twelve edge cubies, which have only two exposed facelets. The cdge cubies are named by
the planes of their two facclets in their goal positions. The complete sct is {UL., UR, UF, UB, DL,
DR. Di-. DB, LF, LB, RF, RB}. An edgce cubic can have two different orientations, labelled 0 and 1.
The orientation of an edge cubie is the even-odd parity of the number of 90 degree rotations it has
undergone, starting from the goal state. The moves of the 3x3x3 cube arc represented identically to

those of the 2x2x2 cube except that the Down, Left, and Back plancs can be rotated as well.

4.4.3. Think-a-Dot

The Think-a-Dot problem is a commercially available toy which involves dropping marbles
through gated channcls and observing the cffects on the gates. Figure 4-4 is a schematic diagram of
the device. There arc three input channels at the top, labelled A, B, and C, into which marbles can be
dropped. When a marble is dropped in, it falls through a sct of channels governed by eight numbered
gates. Each gatc has two statcvs, Left and Right. When a marble cncounters a gate, it goes left or right
depending on the current state of the gate and then flips the gate to the opposite state. A state of the
machine is specified by giving the states of each of the gates. Thg problem is to get from an arbitrary

initial state to some goal statc, such as all gates pointing Left.
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TILE POSITION MACRO

uuuLLL
HUULL
yuuL
uuu
UULLL
uLLL
LLL
uuLL
uuL
uu

10 uLL
14 LL

11 uL

12 u

15 L

BN WOO G N

COOOO0OO0ODODODOCOO0OOODOOCO

2 DDRRRDLUUULL

3 ODRRDLURRDLUUULL

4 DDRDLURRDLURRDLUUULL
5 DDDRRRUUULLL

9 DDRRRULDDRUUULLL

3 DRRRULCORULDDRUUULLL
6 DRRRDLORULULLL

7 DRRDLDRURDLUUULL

8 DRDLODRURDLURRDL.UUULL
10 DDRRURDLDRUUBLLL

14 DRRULDDRURDLDRUUULLL
11 RROLDRURDLDRUUULLL -
12 RDLDRURDLDRURDLUUULL
15 ODRURDLDRURDLDRUUULLL

o b ped b b ek bl b b b b e b b

3 DDRRDLUUUL

4 DDRODLURRDLUUUL

5 DDRRRULLDDRUUULL

9 DRRROLULDDRUUULL

3 RRRDLULDDRULDBRUUULL
6 DDDRRUUULL

7 DRROLDRUUULL

8 DRDLDRURDLUUUL

10 DDRRULDDRUUULL

14 DRRULDDRULDDRUUULL
11 DDRURDLDRUUULL

12 RDLDRURDLDRUUULL
15 DRULDDRURDLDRUUULL

NN NNDNNNDNNNODNNNDNN

Table 4-2: Macro table for the Fiftcen Puzzle
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3 4 DORDLUUU

3 5 DDRRROLULDRRUUULLL

3 9 DRRRDOLULDRUILLDDRUUUL
3 13 RRRDLULDRDLULDDRUUUL
3 6 DDRRULLADRULIIL

3 7 DODRUUUL

3 8 DROLDRUUUL

3 10 DRRDLULDDRUUUL

3 14 RRDLULDDRULDDRUUUL

3 11 DDRULNDDRUUUL

3 12 RODLURDLDRUUUL

3 15 DRULDDRULDDRUUUL

4 5 DDRRRULLDRDLULDRRUUULL
4 9 ORRRDLULDRDLULDRRUUULL
4 13 RRRDLULDROLLDRUULDRDLUUU
4 6 DDRRDLULDRRUUULL

4 7 DRRDDLULDRRUUULL

4 8 DDDRULURDDLUUU

4 10 DDDRUURDLULDRDLUUU .
4 14 RROLULDDDRUULCRDLUUU
4 11 DDDRUULDROLUUU

4 12 ROLODRUULDRDLUUU

4 15 DRULDDCRUULDRDLUUU

5 9 DDRRRUULIL

5 13 DRRRULDDRUULLL

5 6 DRRRDLUULL

5 7 DRRDLURROLUULL

5 8 DROLURRDLURRDLUULL

5 10 RRRDLDRUULLL

5 14 DRRURDLDRUULLL

5 11 RRDLDRURDLUULL

5 12 RDLORURDLURRDLUULL

5 15 DRURDLDRUROLUULL

9 13 DRRRULLL

9 6 DRRDI.UURRDLULL

9 7 DRDRULURRDLULL

9 8 DDRULURRDLURRDLULL

9 10 RRRDLULL

9 14 DRRURDLULL

9 11 RRDOLURRDLULL

9 12 ROLURRDLURRDI.ULL

9 15 DRURDLURRDLULL

Table 4-2, continued
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13 6 RRRDLLDLUURDRULLL
13 7 DRDRUURDLLURDRULLL
13 8 DORULURRRDLLURDRULLL
13 10 DRRURDLLURDRULLL
id i4 RRADLULDRRULLL
13 11 RRRDLLURDRULLL
13 12 ROLURRRDLLURDRULLL
13 15 DRRURDLULDRRULLL
6 7 DRRDLUUL

6 8 ORDLURRDLUUL

6 10 DDRRUULL

6 14 DRRULDDRUULL

6 11 RRDLDRUULL

6 12 RDLDRURDLUUL

6 15 DRURDLDRUULL

7 8 DROLUU

7 10 DRRULLDDRUUL

7 14 RROLULDIRULL

7 11 DDRUUL

7 12 ROLDRUUL

7 15 DRULDDRUUL

8 10 DRADLULBRRUULL

8 14 DCRUURDLULDRDLUY
8 11 RRODLULDRRUULL

8 12 DDRULURDDLUU

8 15 DORUULDRDLUU

10 14 DRRULL

10 11 RROLUL

10 12 RDLURRDLUL

10 15 DRURDLUL
14 11 DRURDLLURDRULL
14 12 RRDLLURDRULL

14 15 RROLULDRRULL
11 12 RDLU

11 15 DRUL

The total number of non-identity macros is 119,
The average case solution length is 139.40 moves.

Table 4-2, concluded
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CUBIE POSITION ORIENTATION MACRO

DLF DLF 1 F U- F2
DLF DLF 2 F2 U F-
DIF DRB 0 R2 F2
DLF DRB 1 R F

DLF DR8 2 R U F-
DLF DRF 0 R U F-
DLF DRF 1 R F2
DLF DRF 2 F

DLF uLs 0 uz r2
DLF uLs 1 U R- F2
DLF uLs 2 u- F-
DLF ULF 0 u- F2
DLF ULF 1 U2 R- F2
OLF ULF 2 F-

DLF URB 0 U F2
DLF URB 1 R- F2
DLF URB 2 uz2 f-
DLF URF 0 F2

DLF URF -1 R- F

DLF URF 2 Uu F-
DRB DRB 1 R2 U- R
DRB DRB 2 R- U R2
DRB DRF 0 R2 U R2
ORB DRF 1 R-

DR8B DRF 2 R U-R
DR8 uLs 0 u2 R2 -
DRB uLs 1 U R

DRB uL8 2 Uz R U R2
DRB ULF 0 U- R2
DRB ULF 1 U2 R

ORB ULF 2 F R2 F-
OR8 URB 0 U R2
DRB URB 1 R

OR8 URB 2 R- U- R
DRB URF 0 R2

DRB URF 1 U- R

DRB URF 2 R U R2

Table 4-3: Macro table for the 2x2x2 Rubik’s Cube
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DRF DRF
DRF DRF
DRF uLs
DRF uLs
DRF uLs
DRF ULF
DRF ULF
DRF ULF
DRF URB
DRF URB
DRF URB
DRF URF
DRF URF
DRF URF
uLs uLB
uLs uLs
uLs ULF
uLs ULF
uLB ULF
uLs URB
uLs URB
uLs URB
uLs URF
uLs URF
uLS8 URF
ULF ULF
ULF ULF
ULF URB
ULF URB
ULF URB
ULF URF
ULF URF
ULf URF
URB URB
URB URB
URB URF
URB URF
URB URF

The total number of non-identity
The average case solution length
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N ONPEPRONMESON=

N = ON R ON -

N OMN -

U- R2
R2 U2

R2 U2
. F2 v2

R2 U2
F2 U2

U R2
RZ U2

macros
is 27.00 moves.

uz
u2

u2
u2

is

u R-
F- R-
R2

U2 R2
R2 U

R2
F2

R2
F2

U2 R2
R2 U-

-Nn
~N
s B oo « By o I g

75.

Table 4-3, concluded

R F2
F- R-
R- F
u- R

R_
u2
F2
u2
U..

R2
R U-
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CUBIE POSITION ORIENTATION MACRO

UF
UF
UF
UF
UF
UF
UF
UF
UFr
UF
UF
UF
ur
UF
UF
UF
uf
UF
ur
ur
UF
ur
ur

ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF
ULF

uL
uL
U8
uB
UR
UR
UF
LF
LF
LB
LB
RB
RB
RF
RF
DL
DL
3]
D8
DR
DR
DF
DF

ULF
ULF
uLs
uLs
uLs
URB
URB
URB
UREF
URF
URF
DLF
DLF
OLF
oLs
DLB
DLB
DRB
ORB
DRB
DRF
DRF
DRF

L F
U_
u2

—_—O e O O O RO O OO OO0 ~0
=
]
e

D B- L2

N R OPRPNORNFRORNOFRLNONPLOR,RNONS
o
}
-
N

Table 4-4: Macro table for the 3x3x3 Rubik’s Cube
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uL
Ut
uL
uL
uL
uL
uL
UL
uL
UL
uL
uL
ut
UL
uL
uL
uL
uL
uL
uL
ut

LF
LF
LF
L.F
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF

uL
us
us
UR
UR
LF
LF
LB
LB
RB
RB
RF
RF
DL
DL
DB
DB
DR
DR
DF
OF

us
us
UR
UR
LF
LB
LB
RB
RB
RF
RF
oL
DL
DB
08
DR
DR
DF
DF

P O R OMRMOROROMROMRORORPORO -

PO R ORORORORORFRORPRFMROREO

F2 U- F- L- F-

F U F-L-
U L2 B- L2 U-

F2 B- U- F2
F L F-
t-uU B U-
L D2 B2 L
F-uu F

F2 L- F2

F L2 F-

L- u- F U
U B- U-1L
F2 B2 U- F2
F R2 B U2
R F- U F
F L- F-

F2 U F2

Uu- L U

Uz F- U2

u Fr- U-

U2 L U2

u2 - Uu- f- U-
U2 L2 U2

B- U- L U
U R2 F2 U-
B U-L U
u Ff2 u-

R U F- U-
Uy b F U-
uz2 L- U2

uz D L- U2
Uu D2 F U-
u D- F U-
U R F2 U-
uz2z D- L- U2
u F U-

Tablc 4-4, continued
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uLs uLs 2 B2 D B-
uLs uLB 1 B D- B2

uLBe URB 0 R 0O B-

uLs URB 1 R B2

uLs URB 2 B

uLB URF 0 R2 B2

uts URF 2 R2 D B-

uLs URF 1 R 8

uLs DLF 0 D2 B2

uLs DLF 2 D- B-
uLs DLF 1 D R- B2

ULB pLB 0 D- B2
UuLB DLB 1 D2 R- B2

uLs DLB 2 B-

uLs DRB 0 B2

uLs DRB 2 D 8-

ULB DRB 1 R- B

UuLs DRF 0 D B2

uLs DRF 1 R- B2
uLs DRF 2 D2 B-

us us 1 L B2L2D L B-
UB UR 0 L R B L-

us UR 1 B2 R2 D R2 B2
uB LB 0 u- F L F-U
us LB 1 u R U-0 B-
uB RB 0 R2 B- U R U-
us RB 1 L 8 L-

usB RF 0 B- U R U-

us RF 1 B D2 R2 B

us oL 0 L. 8- L~

us DL 1 D- L B2 L-

uB D8 0 L B2 L-

us 08 1 D L B-L-

uB DR 0 u R-U-B

us DR 1 D L B2 L

uB DF 0 D2 L B2 L-

uB DF 1 D- L B- L-

Tablc 4-4, continued
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LB
LB
LB
LB
LB
L8
LB
LB
LB
LB
LB
LB
LB
LB
LB

URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF

UR
UR
UR
UR
UR
UR
UR
UR
UR
UR
UR
UR
UR

UR
UR
LB
RB
RB
RF
RF
DL
DL
DB
DB
DR
DR
NF
OF

URB
URB
URB
URF
URF
DLF
CLF
DLF
bDLB
DLB
DLB
DRB
DRB
DRB
DRF
DRF
DRF

UR
RB
RB
RF
RF
DL
DL
D8
DB
DR
DR
DF
DF
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Table 4-4, continued
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URB URB 1 B-D t-D2L B

URB URB 2 B- L- D2 L D- B

UURB DLF 0 R F- R F R2

URB DLF 2 R D2 R-

URB DLF 1 B- D2 B

URB OLB 0 D- R2 D R2 D- R2
URB DLB 1 D B- D2 B

URB DLB 2 R D- R-

URB DRB 0 R2 D R2 D- R2

URB DRB 2 8- D- B

URB DRB 1 R D R-

URB DRF 0 D R2 D R2 D- R2
URB DRF 1 B- D B

URB DRE 2 D2 R D- R-
RF RB 0 R2 D2 RZ D2 R2
RF RB 1 R- F- R-F D R
RF RF 1 F- D- L- U- R2F R U L
RF DL 0 R-D R D F D- F-
RF DL 1 R2 D2 R- D2 R2
RF DB 0 D R2 D2 R- D2 R2
RF DB 1 B2 R2 D2 B- D2 R2 B2
RF DR 0 R- D2 R D2 F D F-
RF DR 1 R2 D2 R D2 R2
RF DF 0 D- R2 D2 R- D2 R2
RF DF 1 B2 R2 D2 B D2 R2 B2
RB RB 1 R2 D2 B R2 B- D2 R- D R-
RB DL 0 R D R-D- B- D-8
RB DL 1 R- D2 F- R2 F D2 R
RB D8 0 B- D2 B D2R D -R-
RB DB 1 8 D2 L B L- D2 B-
RB DR 0 R D2 R- D2 B- D- B
RB DR 1 B D2 L B- L- D2 B-
RB OF 0 B-D B D R D- R-
RB DF 1 B D2 L B2 L- D2 B-
DF DL 0 F D L D- L- F-

DF DL 1 D

DF DB 0 D2

DF DB 1 B D R D- R- B-

DF DR 0 R F D F- D- R-
DF DR 1 D-

DF DF 1 R D D~ F- R- D-
DL DL 1 L- F-D-F D L D-
DL DB 0 L D B D- B- L-

DL DB 1 R- B-D-B D R

DL DR 0 R- D2 R D R-D R
DL DR 1 R- D- B-D B R

Table 4-4, continued




45

The Macro Problem Solver

R2 F- R- F2 D- F- D2

R- D-
D B
D

D8
DR

D8
]}

D-B-L O B D- B- L-

R-
D

R D

R D2 R-

R-

R D

DR

]34

D L-D L D2 L-

R D- R- D2 R L

D_
L D2 L-

R-

DLF
DLF

DLF
DLF

D R

D- L- R- D2 R D R-

D- L

B- L- F-
F- R- F

L

L
R2 F- L2 F
F

F- R
F

F

B L-F
L- F- R

L
E

DLB
DLB
DLB
DRB
DRB
DRB
DRF
DRF
DRF

DLF
DLF
DLF
DLF
OLF
DLF
DLF
DLF

R2 F2
F_
F- R-

F

L2

L

B2 L
L-

L_
F
L- F- R- F

L2 82 L

F
F

0

L

L
L

R

F

D2 L

L- F- R
L- F- L

F- R- F

u- L2

b2 L U L-

L

B- L-

B8

DLF

8- L-

L 8 L-F-1L
D

D
B- L-

0- B
L

L
F

F
F

L- F- R
B2 L

)

0
L2 F2 L-

8-

D-

oL8
DLB
DRB
DRB
DRB
DRF

oLB

B D

F- D-

B-

D_.
F- R-

L-

DLB
pDLB
DLB
DLB
DLB

F2 L2

B2 L
0-

F2 L-

L
R

0- R D L-
B2 L F2 L-

L

B2 L-
F-

D- R

F oL- F- R-F L
L D- R-D L-

R
D

DRF
DRF

bDLB
bLB

is 238.

DRB

DRB
The total number of non-identity macros

The average case solution length is

DRAB
DRB

86.38 moves,.

Tabic 4-4, concluded
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Figure 4-4: 'Think-a-Dot machine

This problem is included as an example for a number of recasons. First, it is a problem for which
Goldstein’s program was unable to find a good set of differences. For cxample, the subgoals of
mapping onc gate at a time to its goal value are not serializable. Secondly, it differs from the previous
two cxamples in that its states do not correspond to permutations of objects. Finally, the primitive
operators of Think-a-Dot do not have inverses, even though if there exists a path from one state to
another, then there always cxists an inverse path. The reason is that given a primitive operator, there

is no single (macro)opcrator which inverts the effect of the primitive operator on every state.

The state variables of the problem are the individual gates, and the values arc Right and Left. The
primitive operators are A, B, and C, corresponding to dropping a marble in cach of the input gates.
Table 4-5 shows a macro tuble for the Think-a-Dot problem where the goal state is all gates pointing
[.eft. Note that there are only two possible values for each state variable and hence only two macros
in cach column, one of which is the identity macro. The last gate in the macro table is gate 7 since
oncc the first scven gatces are sct, the state of the last gate is determined, duc to a situation similar to

that of the Eight Puzzle.
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GATES
1 2 3 4 5 6 7

Right A B C AA CC AAAA C(CCCC

Left

Tahle 4-5: Macro table for the Think-a-Dot machine

4.4.4. Towers of Hanoi

The well-known Towers of Hanoi problem (sce Figure 4-5) consists of three pegs and a sct of
different size disks stacked on the pegs in decrcasing order of size. The standard task is to transfer all
the disks from one peg to another subject to the constraints that only one disk may be moved at a
time and that a larger disk may never be pvlaccd on top of a smaller disk. Note that while the standard
treatment of the problem is only concerned with solving the problem from a particular initial state,
namecly all the disks stacked on one peg, we will address the issuc of transferring all the disks to a goal
peg from any legal in-itial state. A legal state is onc where no disk is on top of a smaller disk on the

same peg.

Figurc 4-5: Towcrs of Hanoi problem

In contrast to the previous examples, this problem is casily solved by GPS, and Goldstein’s
program was able to find the correct differences. In fact, it is often viewed as the classic GPS
problem, yct is included here for several reasons. One is that it demonstrates that the Macro Problem
Solver is not restricted to problems that GPS cannot handle but rather overlaps GPS in its coverage
of problems. Another reason is that the Towers of Hanoi is such a well-known problem in artificial
intclligence that its trcatment by the Macro Problem Solver allows comparison of our method with

other problem solving paradigms.
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Table 4-6 shows a macro table for the three-disk Towers of Hanoi problem, where the goal peg is
peg C. A similar table can be built for any number of disks. The state variables arc the disks,
numbered 1 through 3 in increasing order of size. The values are the different pegs the disks could be
on, namcly A, B, and C. There are six primitive moves in the problem space, one corresponding to
cach possible ordered pair of source peg and destination peg. Since only the top disk on a peg can be
moved. this is an unambiguous representation of the operators.  The complete sct is thus
{AB, AC, BA, BC, CA, CB}. The solution order is to position the disks in increasing order of size.
Note that this is exactly the opposite of the ordering of subgoals for the GPS solution to the problem,

but doces correspond to the order in which the disks are first moved in the GPS solution.

DISKS
1 2 3

A AC CB AC BC CA CB AB AC BA BC AC

»woO MO

B BC CA BC AC CB CA BA BC AB AC BC

C

Table 4-6: Macro table for the three disk Towers of Hanoi problem

The solution that results from this macro table is in general not the most efficient sotution to the
problem in terms of number of primitive moves. Unfortunately, this is a gencral characteristic of the
Macro Problem Solver. In this case, cach macro stacks up the disks on the goal peg, and hence the
ncxt macro must move them to create a ‘;argcr stack on the goal peg. In Chapter 8 we will discuss the

issuc of more efficicnt macro tables for this problem.

4.5. Conclusions

‘The knowledge necessary to cfficiently solve a certain class of problems can be represented by
macro-operator scquences. The key property of these macros is that they leave all previously satisfied
subgoals invariant while solving an additional subgoal as well. The macros can be organized into a
two-dimensional macro table such that a problem solving progranm can solve any instance of the

roblem with no scarch. The resuit is an expert problem solving system for a given problem.
p pertp

The mcthod has been illustrated by a number of example problems, including the Eight and
Fifteen Puzzles, the 2x2x2 and 3x3x3 Rubik’s Cubes, the Think-a-Dot problem, and the Towers of
Hanoi problem. These problems were chosen for their diversity and each onc in fact represents an
entire class of problems for which the Macro Problem Solver is cqually effective. For example,

Rubik’s Cubes are only two of a large class of puzzles that involve twisting various geometric solids,
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sliding tile puzzles may have arbitrary geomietries including one where cubes with orientation are
rolled into the blank position. the Towers of Hanoi Problem becomes even more interesting with a

larger number of pegs, and the Think-a-Dot problem can be generalized to any directed acyclic
graph.
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- Chapter5
Learning Macro Operators

While the previous chapter described the operation of the Macro Problem Solver once it has a
complete macro table, this chapter is concerned with the problem of how the macros are acquired.
This is the learning component of the paradigm. The basic technique that will be used is to scarch
the spacc of macro-operators. Each macro generated is inserted into the macro table in its correct slot,
unless a shorter macro alrcady occupies that slot. We first address the problem of where to place a
given macro in the macro table. We then consider three different methods for generating macros.
Onc is a simple breadth-first scarch through the space of primitive operator sequences. The second is
a variation of bi-directional scarch. The Iast is the macro composition tecinique of Sims [Sims 70]. In
addition, some techniques for the cfficient use of memory are described to cnable the search to
preceed as far as possible. Finally, the design of a problem-independent macro lcarning program is

prescnted by scparating the problem-dependent components from the domain-independent onces.

5.1. Assigning Macros to the Macro Table

In general, the macros that make up the macro table all have the property that they leave an initial
scquence of the state variables invariant if they cqual their goal valucs, and map the next state
variable to its goal value, independent of the values of the remaining variables in the solution order.
In addition, the table should be filled with the shortest macros that accomplish cach subgoal. This
scction is concerned with the problem of determining the correct location in the macro table of a

given macro.

5.1.1. Selecting the Column

In order to determine the column in the macro table in which an arbitrary macro belongs, we
introduce the notion of the invariance of a macro. Given a particular goal state, a solution order, and
a macro-operator, we define the invariance of the macro as follows: ‘The macro is applicd to the goal

state of the problem and the resulting state is compared with the goal state. The invariance of the
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macro is the number of consceutive state  variables of the resulting state that equal  their
corresponding goal values. The sequence starts with the first state variable in the solution order and
continucs until a mismatch is tound. [n other words, if the first state variable of the resulting state
doces not equal its goal value, the invariance of the macro is zero; if the first variable in the solution
order equals its goal value but the second does not, the invariance of the macro is one: and in general
if the first ¢ state variables in the solution order cqual their goal valucs but the i+ 1% does not, then
the invariance of the macro is i. For cxample, if the goal state of the Eight Puzzle is represented by
the vector [B12 345678, the solution order is (B 12 34567 8). and the state resulting from the
application of some particular macro to the goal state is [B 12 36 57 4 8], then the invariance of the
macro is four, because the first four tiles (including the blank) in the solution order arc in their goal

positions and the fifth is not

The invariance of a macro gives the longest initial subsequence of state variables in the solution
order that are left invariant by the application of the macro to the goal state. Hence, the invariance of

a macro determines its column in the macro table.

5.1.2. Selecting the Row

In addition to the column, we must also determine the proper row for a macro in order to include it
in the macro table. A macro in column 7 and row j of the macro table, when applicd to a state in
which the first 7 variables in the solution order have their goal valucs and in which the i+ 1 variable
has the value corresponding to row Jj, results in a state in which the first i+ 1 variablcs have their goal
values. Hence, the row in the table of a macro with invariance i is the row that corresponds to the

valuc of the i+ 1% statc variable that the macro maps to the goal value.
p g

In general, determining the row of a macro requires computing the inverse of the macro. For some
probicms, however, including Think-a-Dot, Rubik’s Cube, and the Eight Puzzle, the row of a macro
can be determinced divectly from the macro itself. We will first describe the general technique, and

then show how the row can be obtained without inverses.

First, note that if a macro has invariance , then its inverse will also have invariance i, wherc the
inverse is obtained by reversing the order of the opecrators and replacing cach with its inverse
opcrator. The reason is that the original macro maps the first ¢ variables from their goal values back
to their goal values and hence the inverse must do the same. Second, if the i+ 1% siate variable has
the value corresponding to row j after the application of the inverse macro to the goal state, then the

correct row of the original macro in the macro table is ;. Thc reasca is that the ‘nverse macro maps
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the value of the i+ 1Y variable from its goal value e that corresponding to j, and hence the original
macro would map the value corresponding o j back to the goal value. "Thus, given a macro with
invariance /, we place it in the table at column 4, and at the row which corresponds to the valuc of the

i+ P variable in the sotution order when the inverse macro is applicd to the goal state.

With the Towers of Hanoi problem, however, there is no guarantee that a macro that is applicable
to the goal state will necessarity be useful from any other states. For example, if the goal peg is peg C.
then the single operaioi CA does not belong in the macro table at all because it doesn't move any disk
to the goal peg. In that case, the inverse macro, which does mrove a disk to the goal peg, is inscrted in

the macro table.

Wec now turn our attention to the direct method of determining the row of a macro without
computing the inverse macro. For example, in the Eight Puzzle, the row of a macro with invariance
can be determined by applying the macro to the goal state, and then finding the tile that is mapped to
the (+ 1 position, or in other words, the state variable with value i+ 1. For Rubik’s Cube, the row of
a macro with invariance { is found by applying the macro to the goal state, and then finding the cubic
that is mapped to the i+ 1% cubicle. However, this only gives the position component of the row
value. The orientation component is obtained by taking the inverse of the orientation of the same
cubic. In other words, we combine the cubie in the i+ 1% position with the inverse of its oricntation.
The two possiblc oricntations of edge cubics are inverses of cach other, while for the corner cubies
the original oricntation is its own inverse and clockwise and counterclockwise oricntations are
inverses of each other. In the casc of the Think-A-Dot problem, the row simply corresponds to the
valuc of the next variable in the solution order after the invariant component. Since there are only
two values, this is just the first non-goal valuc. If the macro changed it from goal to non-goal, then

applying it again will flip it back to the goal value.

5.2. Breadth-First Search

Given the above techniques for placing a macro in its correct place in the macro table, what is still
required for the learning program is a method of gencrating macros. Since we arc interested in the
shortest possible macros for cach slot in the table, we first adopt a brute-force, breadth-first search
from the goal state. Thus, the first macro placed in cach empty slot in the table is guaranteed to be a

minimal length macro for that slot.

It is important to realize that a single scarch from the goal state will find all the macros in the table,
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and that a separate scarch for cach column or even cach entry is not required. We are not scarching
for particular states but rather for particular operator sequences. For problems like Rubik’s Cube that
have no preconditions on the operators, a single search will encounter all possibie operator sequences
up to the length of the scarch depth, and hence will find all macros up to that length. For problems
with operator preconditions, such as the Towers of [Hanoi, recall that we are only interested in macros
that map somce initial subscquence of the state variables in the solution order to their goal values.
Hence, by scarching from the complete goal state and using the inverses of the operator sequences

gencrated. we will find all the macros in a single scarch.

One problem with this learning algorithm is knowing when to terminate it. We cannot simply run it
until all the slots in the macro table are filled because some slots may remain permanently empty. For
cxamplc, the last two columns of the Eight Puzzle macro table can never be filled. due to the property
of the puzzle that only cven permutations of the tiles can be reached from a given state, and hence the
positions of the last two tiles arc determined once the positions of the remaining tiles are known,
Both Rubik’s Cube and the Think-A-Dot problems have similar properties. In gencral, discovering
these propertices is very ditficult. Hence. we have a situation of not knowing when we know enough to

solve every instance of the problem.

There are scveral solutions to this difficuity. One is simply to run the learning program until its
computational resources, in most cascs memory, are cxhausted. Another is the heuristic of
terminating the scarch if one or two additional plies fail to produce any new macros. The best

solution®

involves interleaving the learning program with the problem solving program as co-routines
and only running thc learning program when a new macro is nccded to solve some particular

problem instance.

Brute-force breadth-first scarch is sufficient to solve the Eight Puzzic, the Towers of Hanoi, and the
Think-A-Dot problems. For problems as large as the Fifteen Puzzle and the Rubik’s Cubcs, however,

a more sophisticated technique is required.

6suggc:stc:d by Jon Bentley
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5.3. Partial-Match, 8i-Directional Search

If we assume that cach priwitive operator has an inverse primitive operator, thus ruling out the
Think-A-Dot example, then we can find macros considerably more efficiently than by brute-force,
breadth-first scarch. Consider a macro that leaves ¢ state variables invariant. When applied to the
goatl state, the values of these state variables are mapped from their goal valuces, through a succession
of intermediate values, and finally back to their goal values again. Now consider splitting in half the
scquence of primitive operators that make up the macro. The first half maps the / state variables from
their goal valucs to a sequence of values (v, w, ... ,v;), and the sccond half maps these values back to
their goal vatues. Thus, the inverse of the second half of the macro will map the goal values of these
variables to this same sct of values (v, vy, ...,v). This suggests that, given two different macros that
map the same initial subscquence of / state variables, according to the solution order, from their goal
values to an identical sct of intermediate valucs, composing one of the macros with the inverse of the
other will yield a macro with invariance i Thus, macros can be found by storing the intermediate
valucs of the state variables for each macro when applicd to the goal state and comparing them with
the corresponding values for cach new macro generated, looking for matches among initial

subsequences of variables according to the solution order.

Note that once a match is found, two macros can be generated, depending on which of the two
matching submacros is inverted. The two macros are inverses of cach other. Hence, cach of these
macros must have the same invariance, but in general the rows of the macro table to which they
belong may be different. Furthermore, by using the inverse method for dctcrmining the row of a
macro, the correct row for cach of the macros can casily be determined from the other. Note that this’
is not a heuristic method but is in fact guaranteed to find all minimal length macros, since cvery

macro can be split into two parts as described.

This scheme is closely related to bi-directional scarch, first analyzed by Pohl [Pohl 71]. They have in
common scarching for a path from both ends simultancously, looking for a match between states
generated from opposite directions, and then composing the path from one dircection with the inverse
of the path from the other direction. There are, however, two important differences between this
technique and bi-directional scarch. Onc is that in this case the initial and goal states are the same
state, namcly the goal state, and hencc only one scarch is necessary instcad of two. The second
difference is that, since we are looking for macros that leave only some subsct of the state variables

invariant, we only require a partial match of the state variabics rather than a total match.

The computational advantage of this scheme is tremendous. In order to find a macro of length 4,
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instead of scarching to depth d. we need only scarch to depth [@/2]. Since the computation time for
a breadth-first scarch is proportional to b4, where b is the branching factor and s the depth of the
scarch, this reduces the computation time from b9 to b2, essentially halving the exponent, assuining

the matching can be done cfficiently.

If cach new state must be individually compuared to cach cxisting state, a bi-directional scarch
requires as much time as a uni-directional scarch, with most of the time taken up doing the
comparisons. Thus, the performance claimed above can only be achieved if a new statc can be

compared to all the cxisting states in constant time,

IFortunately, hashing the states based on the values of the state variables will achieve this
performance. To find a macro with invariance i, a match among the first ista[c‘variablcs must be
made, which implies that the hash function may not depend on any other state variables. The reason
is that including another variable in the hash function in which the two states do not match may
result in their being mappcd' to different parts of the hash table. This presents a problem in that,
whilc scarching for macros with low invariance, there is very little information that can be used by a
hash function to scparate the states in the table. On the other hand, when scarching for macros with
greater invariance, an cffective hash function is essential for tolerable performance of the scarch

algorithm,

In order to resolve this difficulty, we make use of the fact that macros with low invariance are
relatively common while macros with high invariance are much rarer. Thus, in a breadth-first,
bi-directional scarch, the macros to fill the low invariance columns of the macro table will be found
fairly carly, and subscquent effort can be focused on macros with greater invariance, allowing a more
effective hashing function to be used. The scarch algorithm works by maintaining an invariance
threshold. which at ary given point in the scarch is the minimum invariance for which all the
clements in the corresponding column of the macro table have not yet been filled. At the end of each
ply of the scarch, if the invariance threshold has increased, then all the states in the hash table are
rchashed using a more discriminating hash function constructed by incorporating the additional state
variable(s) corresponding to the columas that were filled since the last ply, and the scarch continues.
This allows the low invariance macros to be found and also permits an cffective hash function to be

used for scarching for the high invariance macros, which occupics most of the scarch.

An alternative scheme for comparing the gencrated states cfficiently uses a scarch tree instcad of a

hash table. As each statc is generated, it is stored in a tree where cach level of the tree corresponds to
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a different state variable and different nodes at the same level correspond to ditferent possible valuces
for that state variabic. The ordering of levels of the tree from top to bottom corresponds to the
solution order of the state variables from first to last. ‘Thus, cach node of the tree corresponds to an

assignment of values to an initial subsequence of state variables in the solution order.

A state is inserted in the tree by filtering it down from the root node o the last existing node which
corresponds to a previously generated state. A new node is created at the next level of the tree and the
macro which generated the new state is stored at the new node. Since the states are gencrated
breadth-first, this ensures that with cach existing node is stored a shortest inacro which maps the goal
state to the inital subscquence of values corresponding to the node. When a new state reaches the

last previously cxisting node it matches in the tree, a macro is created as before.,

The cxpected number of probes to compare a new state to the existing states for the hashing
scheme is constant, assuming the hash table remains partly emgty [Knuth 73} For the scarch tree, the
expected number of comparisons is lincar in the number ¢! state variables. The partial-match,
bi-directional search algorithm is sufficient to find ail the macros for the Fifteen Puzzie and the 2x2x2
Rubik’s Cube. The limitation of this algorithm, as for any bi-dircctional scarch, is the amount of

memory available for storing states.

5.4. Macro Composition

Finding all the macros up to length ninc for the 3x3x3 Rubik’s Cube macro table requircs about
100.000 words of memory. This still leaves seven empty slots, out of 238, in the table. These

remaining slots can be filled using the macro composition technique employed by Sims [Sims 70].

If we compose two macros with invariance i, the result will also be a macro with invariance at
least 4, but in general a different macro. [f, in addition, when the macros are applicd to the goal state
the two i+ 1% variables take on the same valucs, but not necessarily the goal valucs, then if we
compose cither macro with the inverse of the other macro, the result will be a macro with invariance
at least /- 1. This is actually just a special case of the more general technique described in the
previous section, specialized in the sense that not only are the first ¢ variables constrained to match,

but they must cqual the goal values as well.

The advantage of this technique is that it allows us to find macros with high invariance with very
little computation,, by using macros with high invariance that have alrcady been found. The

disadvantage of the technique is that a macro found by this mecthod will not in general be the shortest
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macro for the corresponding slot in the macro table, In fact, there is some psychological plausibility
to this method tor finding macros in that many human cube solvers, particularly novices, use

compositions of shorter macros to coimplete the final stages in their solution strategics.

The macro composition techniquce is effective in finding the remaining scven macros for Rubik’s
Cube that are beyond the range of the bi-directional search, Most of these macros are fourtcen moves
long whercas macros twelve moves long exist for these slots in the table, The complete learning
program for the 3x3x3 Rubik’s Cubce runs for less than 15 minutes of CPU time on a VAX/11-780

and uses about 200K words of memory.

Note that macro composition could be used to find all the macros for Rubik’s Cube, starting with
only the primitive operators of the problem. However, as pointed out in scction 3.6, the resulting
strategy would be extremely incfficient in terms of number of primitive moves. The combination of
bi-directional scarch and macro composition amounts 1o a tradeoff between learning time and space
vs. solution cfficiency. An alternative approach to the computational limitations of bi-directional

scaich, that of decomposing the problem, will be presented in section 8.2.3.

5.5. Efficient Use of Memory

Since the amount of available memory is what limits the scarch for macros, memory must be used
as cfficiently as possible. In particular, we would like to minimize the amount of memory required for
cach entry in the hash table. There arc two picces of information to be stored with cach hash table
entry: a description of the state, in order to match the state variables, and the macro which led to the
state, in order to construct the macros that result from a match, In the following discussion, we

assumc that our memory is divided into words of w bits, Typical values tor warc 32 and 36 bits.

In general, the macro component of a hash table entry can be encoded in a single word. The
intuitive reason for this is that the number of different macros we will be able to store will be far less
than 2%, If we represent our primitive operators by the integers zero through k inclusive, then a
scquence of primitive operators can be packed into a word, without loss of information. by storing
the cquivalent integer in base £+ 1. For example, a Think-a-Dot macro such as {A B C A] would be
encodced in the integer 0- 3+ 1:324-2.31 4+ 1.39=16,,,

In order to pack every macro into a single word, we must be careful to encode the primitive
operators so that the number of operators is close to the cffective branching factor of the space.

Otherwise, if preconditions and redundant opcerations climinate, most operator scquences, then we
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may be able to search to the depth of longer macros than can be cncoded in a single word. FFor
example, if the primitive operators of the Eight Puzzle are represented by ordered pairs of source and
destination positions, we get 24 different operators. However, we can unambiguously represent the
primitive operators by giving the direction a tile is to be moved: left, right, up, or down. This is still

somewhat redundant since the average branching factor of the space is only 1.67 (sce section 7.3).

How much memory is required for the state description component of a hash table entry? If there
are s distinct states in the space, then the number of words required to encode a state is (log s}/ w.
The macro together with the goal state, however, completely determine the resulting state. Hence,
there is no need to store the state in the hash table at all, Instead. cach time a new state must be
comparcd with the cxisting hash table cntry, the existing state can be regenerated by unpacking the

macro and applying it to the goal state.

While the above argument shows that in principle we only nced one word of memory per hash
table entry. in practice the constant regencration of states requires a great deal of computation time.,
A more tinc-cfficient strategy, at the cxpense of doubling the spice requirement, is to usc an
additional word per hash table entry to vepresent as much of the state as can be encoded in a single
word. As in the case of a macro. if v is the number of diffcrent possible values for a state variable,
then the valucs of w/log v state variables can be stored in a single word as an integer basc v. Only if a
new state matches an :xisting entry in these state variables, as well as hashing to the same value, does

the entire state have to be regenerated from the macro.

Since much of the information about the values of the state variables used in the hash function is
reflected in the location of an entry in the hash table, the variables stored in the additional word
should be chosen to be different from those used in the hash function Both these scts of state
variables must be chosen from the first ¢ state variables in the solution order, where ¢ is the current

invariance threshold of the macro scarch.

5.6. Design of a Problem-Independent Macro Learning Program

In this scction we sketch a design for a macro learning program that is independent of any
particular problem domain. This is accomplished by scparating the components of the learning
program into thosc that depend on the problem domain and those that are problem-independent,
while striving to minimize the problem-dependent components of the system. First the problem-
dependent components will be presented followed by the problem-independent ones. We assume
throughout that a statc is represented by the values of a vector of state variables and that cach

primitive operator has an inverse primitive operator.
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5.6.1. Problem-Dependent Components

Perhaps the most obvious problem-dependent component is the actual goal state itself. Recall that
the entire macro table is dependent ou the selection or a particular goai state. In addition, a computer
maodel of the problem must be provided, most conveniently in the torm ot an ¢perator application
function and a legal move gencrator. The operator application function takes a state and a primitive
operator as arguments and returns the state that results from applying the primitive operator to the
given state. ‘The legal move gencerator takes a current state and the last operator that was «pplied to
rcach that state as arguments and returns the set of primitive operators that generate new statcs,
taking into account any preconditions on the operators. While the last operator applied is not strictly
necessary as an argument to this function, it allows the legal move generator to exclude redundant

movcs such as the inverse of the last operator.

Another important problem-dependent component of the macro learning program is the solution
order, or the sequence in which the state variables are to be mapped to their goal values. The
constiaints on the solution order will be considered in Chapter 6, and hcuristics for choovsing a

solution order that results in ¢fficient solutions will be discussed in Chapter 8.

In order to pack macros into a word cfficiently, the total number of primitive operators must be
known. In addition, in order to construct a macro once a match between state variables is found, the
inverses of cach of the primitive operators must be provided. Furthermore, the dirnensions of the
macro table arc determined by the number of state variables and the number of different values they

can assume.

A subtle but important picce of problem-dependent information is some means of determining the
number of slots in cach coluiin of the macro table which remain empty in the complete tabie. This is
nccessary in order fo allow the invariance threshold to increase to take advantage of more cffective
hashing functions as the scarch progresses. For example, in a problem like the Fight Puzzle where the
states arc permutations of a sct of valucs, the learning program must know that if variable ¢ has value j
for its goal valuc, then row j of the macro table will be empty for all columns greater than ( in the
solution order. Otherwise, the invariance threshold will never advance beyond the second column of
the macro table duc to the ecmpty slot, and the remainder of the search will be crippled by a hash
function based on only the first two state variables. In addition, such information is uscful for

terminating the learning program when the macro table is completcly filled.




I.carning Macro Opcrators ol
5.6.2. Problem-independent Components

‘The remaining components of the macro learning program are problem-independent. We bricfly

discuss the major modules below.

First, a number of utility functions arc required. Thesc include functions that pack and unpack
macros, mapping between sequences of primitive operators and their integer encodings. In addition,
there must be a macro application function that takes a macro and a state as arguments and returns
the state that results from the application of the macro to the given state. "T'his function is problem-

independent, but relics very heavily on the problem-dependent operator application function.

The hashing function is of critical importance to the performance of the learning program. As
mentioned cariier, the nash function is different for different levels of the search. Recall that the
number of state variables that can be encoded in a word is =w/log v, where v is the number of
different state variable values. If the invariance threshold ¢ is less than or equal to A, then the first ¢
staie variables in the solution order are used in the hash function. Once the invariance threshold
exceeds /i, then /i state variables are chosen for the hash function, uniformly distributed from among

the first ¢ variables in the order.

The scarch function generates one ply of the search space per call and passes cach state generated
onc at a time to a state processing function. This function hashes the state and scans the hash table
for a state whose state descriptor word matches the given state, passing both states to a comparison
function tor cach match it finds. The comparison function regenerates the stored state and calls a
macro processing function if the match between the two states is greater than the invariance
wireshold. This function generates the complete macro and its inverse, places them in their correct
slots in the macro table if those stots are empty, marks the slots full, and increases the invariance
threshold if an entire column is filled as a result. Finally, there is a main program that, in addition to
other initialization functions, places the primitive operators, or macros of length one, in their

respective slots in the macro table.
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5.7. Conciusions

We have presented a nuimmber of techniques for learning macros eftectively. Thesc include brute-
force breadth-first scarch, a varation of bi-directional scarch that is only single-ended and requires
only a partial match of the states, and the macro composition technique of Sims.  Since the
performance of the learning program is limited by the amount of available memory for a hash table,
it is shown that an cntry in the table requires only onc word of memory. Finally, a design for a
problem-independent macro learning program is presented by separating the problem-dependent
components {rom the problem-independent oncs. The most important results of this chapter arc that
all the macros in the table can be found in a single scarch fiom the goal state and that filling the

macro table is feasible for problems of substantial size (c.g. the 3x3x3 Rubik’s Cube).
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Chapter 6
The Theory of Macro Probiem Solving

We have scen that macro problem solving works for a sct of example problems, and have
demonstrated the learning of macro-operators. We now turn our attention tw the question of why
these techniques work. The reason for addressing this issuc is twofold: to understand the problem
structure it is based on, and to characterize the range of problems for which it is effective. The main
contribution of this chapter is to identify a property of problem spaces called operator
decomposability. Roughly, operator dccofnposability cxists in a problem space to the extent that the
cffect of an operator un a state can be decomposed into its effect on cach individual component of the
state, independently of the other components of the state. It will be shown that operator
decomposability is a sufficicnt condition for the application of macro problem solving. [n addition,

the technique will be genceralized to admit arbitrary intermediate states.

The theory of macro problem solving will be presented in two parts. We will first address the
special case in which states are described by a vector of state variables and the subgoals are to achieve
the goal values of state variables. We will then consider the more gencral theory which admits any
type of state description and arbitrary subgoals. The theory will be presented in the order in which it
was discovered. The rationale for this is that the path of discovery is interesting in itself and is also

most likely to be the "path of least resistance™ for the reader.

Given the representation of a problem as a vector of state variables, the behavior of the Macro
Problem Solver can be described as follows. The order of columns in the macro table implies an
ordering of the state variables. The macros in the first column arc uscd to map the first state variable
from whatever value it has in the initial state to its goal vatlue. The macros of the sccond column map
the sccond variable to its goal value and lcave the first variable cqual to its goal value. Similarly, cach
ol te othier culumins of macros are used to map the values of their corresponding state variables to
their goal valucs from whatever values they have at that stage of the solution process, while lcaving all

the previous variables equal to their goal values.
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6.1. What is the Value of Non-Serializable Su bgoals?

If we view the values of the state variables between macro applications, the values of an initial
subsequence of vartables in the solution order will equal their goal values. At cach stage of the
solution, the length of this scquence increases by one. However, if we observe these values in the
middlc of a macro apptlication, there is no guarantee that any of the variables will cqual their goal
values. [f we observe an entire solution sequence ignoring the boundarics between macros, then after
a variable achicves its goal value, in general its value will later change to a new value, and this will
happen a number of times betore the final goal state is recached. Since a state variable does not
remain at its goal value once it is achieved, what is the purpose of achicving the goal valuc the first

time and cach time thercafler except for the last?’

The relevance of the question becomes clear when we compare it with the corresponding question
for the situation where we have serializable subgoals. In that case, the goal state is a conjunction of
subgoals and solving a particular subgoal represents progress toward the goal in the sense that the
number of remaining subgoals to be satisfied decreases. However, we cannot make the same claim if

asubgoal is to be violated after it is achieved.

Even if it is subsequently violated, achicving a non-scrializable subgoal may represent progress
because it moves us closer to the goal by the metric of minirnum number of moves in the problem
space, which is often the case. However, the experiments reported in Chapter 2 show that at least for
the 2x2x2 Kubik's Cube, the minimum number of moves to the goal state is independent of the
number of solved subgoals. Yet, the 2x2x2 cube is one of the examples for which the Macro Problem

Solver works. Hence, the question of the utility of these subgoals remains to be answered.

6.2. Macro Tables from Random Intermediate Goals

Since the particular subgoals we used to solve the 2x2x2 cube bear no relation to distance from the
final goal, we might ask whether an arbitrary sct of subgoals might do just as well. Surprisingly, the

answcr turns out to be yes!

Consider the macro table for solving the 2x2x2 Rubik’s Cube shown in Table 6-1. Each sct of
macros corresponds to a sct of partially specified intcrmediate states (shown in Table 6-2) generated
as follows: First, a random solution order was generated: (URF ULF ULB URB DLF DRF DRB).

7111is question was raised by Allen Newell,
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CUBIE POSITION ORIENTATION MACRO

URF DLF 0 F2 U
URF DLF 2 FU-
URF DRB 0 R2 U
URF DRB 1 R2 F2
URF DRB 2 R F
URF DRF 0 F

URF DRF 1 R U
URF DRF 2 R F2
URF uLB 0 u- F-
URF uLB 1 U2 r2
URF uLs 2 U R-
URF ULF 0 F-
URF ULF 1 U- F2
URF ULF 2 F U
URF URB 0 uz2 f-
URF URB 1 U F2
URF URB 2 R- F2
URF URF 0 u F-
URF URF 1 F2
URF URF 2 R- F
ULF DRB 0 U R-
ULF DRB 1 F

ULF DRB 2 U R2
ULF DRF 0 U r
ULF DRF 1 U R2
ULF DRF 2 R- F-
ULF uLs 0 uz2 r
ULF uLB 1 F U2
ULF uLs 2 Uu R
ULF ULF 0 F R2
ULF ULF 1 U- R2
ULF ULF 2 uz R
ULF URB 0 u r
ULF URB 1 U R2
ULF URB 2 R F-
ULF URF 0 F R-
ULF URF 1 R2 F-
ULF URF 2 U- R

Table 6-1: Macro table for the 2x2x2 Rubik’s Cube based on random intermediate states

R2

F2
R2

F2

F2

05
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O h o

uLB DLF 0 R- U F- U- F-

uULs DLF 1 R- F U2 F U

ULB DLF 2 R2 F- R

uLB uLs 0 U- R- U2 r U

uLB uLs 1 F R F- U R-

uLB uLs 2 F2 U2 R F- U

uLs ULF 0 R- U2 F U

uLB ULF 1 R- F- R- F- R

uLs ULF 2 U- F R2 F- R-

uLB URB 0 uz R- U2 F U

uLs URB 1 R U- F- U R2

uLB URB 2 R2 FZ R F

ULB URF 0 Uu R-U2F U

uLs URF 1 F2 R- F2 R- F-

uLB URF 2 F R2 F- R-

URB DLF 0 R- U- F2 U2 fF- U-

URB DLF 1 R2 U R-U- R F R-
{JRB DLF 2 R F- R2 F2 R- U

URSB DRF 0 U- F2 R2 U2 F- U2

URB ORF 1 F- R2 U2 F2 R- U2

URB ORF 2 R2 U R- F U-F R-
URB uLB 0 R U- R F- R-F

URB uLs 1 R- U- F2 R U2 F- U-
URB ULB 2 R- F U-F U R-

URB URSB 0 R-F R2ZF U F-R

URB URB 1 R2 U2 R U2 R2 U- R2
'JRB URB 2 R- U- F2 R- U2 F- U-
DLF DLF 0 U- R- F R2 U- F2 U2
DLF DLF 1 F- U2 F- U2 R U- F- U-
DLF DLF 2 y- F- U F2 R F- R

DLF DR8 0 R- F R2 U2 F R- U-
DLF DRB 1 U F- R- U R-U2ZR F2
DLF DRB 2 R2 U- F R- U- R2F R U2
DLF URB 0 Uz fF U F2U F U R
DLF URB 1 F U2 F- R U2 R U-
DLF URB 2 R U2 R- U F2 U- R2 U-
DRF DRF 0 U F-U2R F U2F U
DRF DRF 1 F- U F2 R- F U- R2 F
DRF DRF 2 Uz R F~R- U F U- R2 F2 U2
DRF URB 0 F- R- F2 R F2 U- R- F U-
DRF URB 1 R- F2 R F2 U2 R U- F2 U
ORF URB 2 F- U2 R- U- R- F2 R- F2

Total number of non-identity macros is 80.
Average case solution length is 32.83 moves.

Table 6-1, concluded
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TARGET VALUES

URF ULF uLs URB DLF DRF DRB
1 DLF 1
2 DRF 0 ORB 1
3 DRB 2 ULF 0 URF 0
4 URF 2 DRF 2 UL 1 ULF 0
5 URF 0 ULF 1 DRB 2 uLB 2 DLF 2
) URF 0 ULF O uLs o URB © DLF 0 DRF O DRB 0

Table 6-2: Randomly sclected intermediate states for the 2x2x2 Rubik's Cube

Then, for the first intermediate state, a random position and orientation (DI.E, 1) was chosen for the
first cubic (URFE). from the set of legal values. For the sccond stage, random positions and
orientations were chosen for both the first and sccond cubies. Similarly, random values are chosen
for the remaining intermediate states. The final state is the actual goal state of the problem. The only
constraint on this process is that cach partially specified state must correspond to at least one legal
state in the problemn space. In particular, in this case cach value must represent a different cubic from

all the other values at that stage.

The first group of macros in the table map the first cubie (URF) to position DL.F and orientation 1,
which is not its goal value, from cach possible valuc it could have in the initial state. The second
group of macros map the sccond cubic (ULLF) to (DRB, 1) which again is not its goal value. At the
same time, these macros all map (URF) from (DLF, 1) to (DRF, 0). The macros in the remaining
group hchave similarly. Finally, the last group of macros in the wble maps the last intermediate state

o tic goal state.

This table illustrates two important gencralizations of the Macro Problem Solver. One is that the
target values of variables in the intermediate states need not be their goal values. 'The second is that
the target values of a particular variable need not be invariant over successive stages but may change
from stage to stage. The only requirements are that at cach stage, the values of ail previous variables
in the solution order must be known, and they must correspond to at least one legal state in the

problem space.

There i5 a penalty in lcarning time for allowing the value of a variable to change from one
intermediate state to another. For the “standard™ macro table which uscs goal valucs for the target
valucs, the entire table can be filled in with onc scarch starting from the goal state. If we allow target
values to be different from the goal values, but still require them to remain constant from one

intermediate state to the next, then we can still fill in the table with a single search starting from the




08 I.carning to Solve Problems by Scarching for Macro-Operators

state specified by the set of target values. The goal state is then reached by including a single macro at
the end of the table which maps the target state to the goal state. However, if we allow the target
values to change from onc intermediate state to the next, then we will in general need a scparate
scarch for cach column of the macro table, starting from the state specified by the target values at that
point. On the other hand, since the running time of the learning program 1% dominated by the depth

of the longest scarch, this docs not increase the order of the running time.

What is the effect of allowing these extra degrees of freedom in the macro tables on the cfticiency
of the resulting sotutions, in terms ot number of primitive moves? [n general, constructing a table
from random intermediate states will result in a less cfficient strategy, since random subgoals will not
move the problem closer to solution. Fowever, in the casc of the 2x2x2 Rubik’s Cube, the standard
subgoals do not converge on the goal in terms of number of primitive moves. Hence, the strategy that
corresponds to the macro table built using random intermediate states (Table 6-1), should be as
cfficient. in terms of number of primitive moves, as the straiegy builc ifrom the standaid intermediate
states (Table 4-3). In fact, Lhc‘u\'cr(xgc casc solution I¢ngth for the random intermediate states is 32.83
moves, whilc the standard subgoals result in an average case solution length of 27.00 moves. This
discrepancy is duc to the fact that with the standard subgoals, at cach stage of the solution there is a
small probability that the next subgoal will also be satisfied and hence no inacro uced be applicd.
However, with intermediate states which change from one stage to the next, a macro must be applied
at cach stage. This fedture also shows up in the difference in the number of non-identity macros in
the two tables (75 vs. 80).

On the other hand, by taking advantage of this extra frcedom and cleverly selecting target values,
slightly more efficient solutions than those resulting from goal target values can be achicved for some

problems, as will be shown in section 8.1.2.

Viewed in this light, the Macro Problem Solver appears to embody an extremely general method.
We simply randomly gencrate a sct of intermediate states, subject to the constraint that each of the
partially specificd intermediate states correspond to a legal srate in the problem space. and then fill in
the macro table. However, we haven't yet placed any constraints on the problem in order to apply the
‘mcthod.

If we restrict our sct of subgoals to contain just the main goal, then the Macro Problem Solver in
fact becomes a universal method which amounts to simply precomputing and storing the solution to

every possible problem instance. However, the usefulness of the method depends on the number of
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macros required. The reason it is an cffective technique for our examples is that a very small number
of macros arc required. relative to the size of the space. What poopertics of a problem allow a very
cfficicnt strategy tor a very large number of problem instances to be expressed with a very small

number of macros?

6.3. Operator Decomposability

When we examinge the macro table for the 2x2x2 Rubik's Cube (Table 4-3), we notice that the first
column contains 21 cntrics, including the identity macro. There is one macro for cach possible
combination of position and orientation that the first cubic in the solution order could occupy in the
initial state, or one macro for cach possible valuc of the first state variable. Thus, the choice of what
macro to apply first depends only on the value of the first state variable. Another way of looking at
this is that for a given value of the first variable, the same macro will map it to its target value

regardless of the values of the remaining state variables.

In general, this property would not hold for an arbitrary problem. In fact, in the worst caéc, one
would need a different macro in the first column for cach different initial state of the problem. If we
necded a different macro for each initial state for just the first stage of the solution, we may as well
store the macro which gives the complete solution. As mentioned above, this reduces tie method to
nothing more than pre-computing the solution to all possible problem instances and storing the

results.

Returning to our example, we notice that in the sccond column as well, we only need one macro for
cach possible value of the second state variable. Again, this is due to the fact that its application is
independent of the values of all succeeding variables in the solution order. Note that the actual
macros themsclves are very much dependent on the valuc of the first state variable. However, this
value is fixed by the pre-determined intermediate states. Similarly, for the remaining columns of the
table, the macros depend only on the previous siate variables in the solution order and are

independent of the succceding variables.

This property can be characterized by examining the definitions of the operators in terms of the
statc variables. For Rubik’s Cube, cach opecrator will affect some subset of the cubies or state
variables, and leave the remaining state variables unchanged. However, the resulting position and
oricntation of cach cubic as a result of any twist is solely a function of that cubic’s position and
orientation before the twist was applicd, and indcpendent of the positions and orientations of the

other cubics. We refer to this property as operator decomposability.
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The Tollowing scctions will tormalize this notion and show that operator decomposability is a
sutticient condition tor the existence of a noa-trivial macro table. For simplicity, we restrict the
theory to the case where the target values of the state variables are their goal values. [t could casily be

cxtended to encompuass arbitrary target vaiues.

6.3.1. General Definitions

We begin the formal treatinent with precise detinitions of what is meant by a problem, a problem
instance, a macro, and a macro table. In general, capital letters will be used to denote sets, bold face
will be used for vectors and vector functions, and normal face will be used for scalars and scalar

functions.
Definition 1: We define a problem P to be a triple (S, O. g) where:

S is a sct of states and cach state s€S is a vector of state variables (s,.5,. . .. .5,), where
the s; are chosen from a set of values V={v, v, ...,v;}. Note that in gencrat SC V7,
where Vs the set of all z-clement vectors with elemerits chosen from V.

O is asct of operators where cach operator 0€ O is a total function from St S. We will
write o(s)=t to denote the application of operaior o to state s resulting in state t. In the
cvent that there are preconditions on the operators. then VseS and 0€0 st s docs not
satisfy the preconditions of opcrator o, we adopt the convention that o{s)=s.

ge€S is a particular state called the goal state, represented by the vector (g8, . - - .8,),
where cach g, is called the goal vaiue of variable i

L.et'S, be the sct of all siates in which the first i— 1 state variables cqual their ¢Hal values
or

s¢S, iff seS and Vx. lgx<gi=1 s,=g,

- Similarly, let Sy be the subsct of S;in which the ™" state variable has value j, or

s€Sy iff seS; and 5;=;

Furthermare. we restrict the set of states of a problent to those that are solvable in the
sense that:

VseS. 3 amacroms.t. m(s)=g.
Definition 20 A problem nstance pis a pair (P, s,,,,) of a problem P and a particular
initial state s;,;,.

Deflinition 3: A acro is a finite scquence of operators (0,.0., . .. .04) chosen from O,
where k20 is the length of the sequence. We write m(s)=t to denote the application of
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macro m to state s, where t=og(og_ (... (0(8))... ). [ kis zcro. mis the identity macro
[such that Vse S, I(s)=s.

Definition 4 A macro table s a set of macros M, cach denoted by
my for I <i <nand je V' wheremy;is defined as follows:

lfS,jz Z then mj; is undefined.

Othcrwisc. if S;;5£ @, then

Vs€SU-. m; (s)€S;4,

Note that if j= g, then my =1, the identity macro.

We now address the issuc of operator decorposability, starting with a special case called foral

decomposability. The more gencral case of seriaf decomposability will be covered in the next section.

6.3.2. Total Decomposability

Definition 5: A function fis rotally decomposadle il there exists a corresponding scalar
function ffrom ¥to ¥ such that

VseS 1(s)= (5.5 . . 5 =(5) S5 . .. S(S).

Lemma 6: A macro m is totally decomposable if cach of the operators in it arc totally
decomposable.

Proof: In order to prave this result, it suffices to show that tie composition of two
totally decomposable functions is totally decomposable.

Assumec that g and h are totally decomposable functions and that f is the composition of
g and h. Then

f(s)=g(h(s)=gh(s.5, . ... s =g(h(s) sy, . .. A(sy))=
(g(M(s)).gCh(s), ... .g(H(s,)))

where g and /i arc the scalar functions which correspond to g and h, respectively. Thus. fis
totally decomnposable. O
Definition 7: A problem P is totally decomposable if Yo0c0.0is totally decomposable.

The following theorem is the fundamental result of this scction.

Theorem 8: If a problem is totally decomposable, then there exists a macro table for the
problem.

Proof: To prove the existence of a macro table M, it must be shown that for each 7 and j,
my; is cither undefined or cxists according to definition 4. Hence, Vij for 1£ign
and j €V, cither:

Case I: S;= @ in which casc m;, is undcfined, or
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Cuse 2: Sy @ in which case s €Sy Since all states are solvable by definition, there
exists a macro ms.t. m(s)=g. Recall that

VseS,-j,S},:g). for 0<y<i=1 and s5;=j

Also, recall that g=(g,.8,. .- . .8y)- Since s€S;, m(s)=g. and m is totally decomposable,
then

misy)=m(g,)=g, for 0<y<i=1 and m(s;))=m(j)=g
where e is the scalar function corresponding to m. ‘This is true independent of the valuces
of s, , through s,. Theretore,

VseS,-j, n(sy)=g, for 0<y<i

Thus,
VS € SU' ln(S)E Si+1

O

Hence. mis m;.

All of the operators of Rubik’s Cuibe are totally decomposable. As a result, all macros for the cube
arc totally decomposable as well, This explains why cach column of the acro table need only have
enough entries for the different possible values of the corresponding state variable, and hence why

the total numbcer of macros is small relaiive 1o the size of the space.

65.3.3. Serial Decomposability

The small number of macros in the macro table is due to the fact that the cffect of the macros is
independent of the succeeding variables in the solution order. However, indcpendence of the
preceding variables in the soiution order is not nccessary. since these values arc known when the
macros arc gencrated. This suggests that a weaker form of opcerator decomposability would still result
in the same number of macros. This is the case with the Eight Puzzle, the Think-a-Dot problem, and

the Towers of Hanni problem.

In the Eight Puszle, the state variables correspond to the different tiles, including the blank. Each
of the four operators (Up. Down, L.cft, and Right) affect cxactly two state variables, the tile they
movc and the blank. While the effects on cach of these two tiles are decomposable, the preconditions
of the operators arc not. Note that while there ure no preconditions on any operators for Rubik’s
Cube, i.c. all operators are always applicable, the Eight Puzzle operators must satisfy the precondition
that the blank be adjacent to the tile to be moved and in the dircction it is to be moved. Thus,

whether or not an opcrator is applicable to a particular tile variqblc depends on whether the blank
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variable has the correct value. In order for an operator to be totally decomposable, the decomposition

must hold for both the preconditions and the postconditions of the operator.

How do we cope with operators thot are aot totally decomposable? One possibility is that for those
columns of the macro table preceding the one corresponding to the blank tile, we include a separate
macro for cach possible combination of positions for the tile to be moved and the blank. For those
stages following the positioning of the blank, we nced only cnough macros for the different positions
of the tile to be positioned next. The disadvantage of this approach is that the number of macros in
the columns that precede the blank in the solution order increases from order o to order 12, where

is the number of tiles.

The obvious solution to this problem is to pick the blank tile to be first in the solution order. Then,
in all succeeding stages the position of the blank will be known and hence the dependence on this
variable will not increase the number of macros. The net result of this weaker form of operator
decomposability is that it places a constraint on the possible solution orders that will result in a
minimum number of macros. The constraint is that the state variables must he ordered such that 1) at
cach stage of the solution, the preconditions of cach operator depend only on the current and
preceding state variables in the solution order, and 2) the effect of cach operator on cach state
variable depends only on that variable and preceding state variables in the solution order. [f such an
ordering exists, we say that the operators exhibit seri(_zl decomposability. In the case of the Eight

Puzzle, the constraint is simply that the blank must occur first in the solution order.

The following scction is a formal trcatment of scrial decomposability. The presentation exactly

parallels that of total decomposability.

Definition 9: A solution order is a permutation 7 of the state variables of a state vector.
Since we will never refer to more than one solution order at a time, without loss of
generality we will continue to refer to a state as a vector of state variables (s,,s,, . . . .5,)
witir the assumption that the order of the subscripis curresponds to the order of the state
variables in the solution order under consideration.

Definition 10: A function fis seriuily decomposable with respect to a particular solution
order o iff there exists a set of vector functions f; for 1 <i<n, where cach f; is a function
from V/ to ¥, and V' is the sct of i-ary vectors with components chosen from ¥, which
satisfv the following condition:

VseS (s)=0s05p - .. .5 =(C(5)05.5). . o LSSy - - 5)

Lemma 11: A macro m is scrially decomposable with respect to a solution order o if
cach of the opcrators in it are scrially decomposable with respect to 7.

Proof: In order to prove this result, it suffices to show that the composition of two
serially decomposable functions with respect to a solution order « is also serially
dccomposable with respect to .
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Assume that g and h are serially decomposable functions with respect to a solution
order o, and that fis the composition of g and h. Then

m(s)=g() =g(h(s.s, ... 50=gh,(s) his.s) ... h(s.5,....5))=
(g, () g (s b)), gt (s) n(s,s) - hyses, o8,

where g, and h; arc the /-ary vector functions which correspond to g and h. respectively.
Hence fis serially decomposable with respect to 7. O

Definition 12: A problem P is scrially decomposable if there exists a solution order o
such that Vo< O, 0is serially decomposable with respect w 7.

The tollowing theorem subsumes the case of toral decomposability and is the main theoretical

result ot this thesis.
Theorem 13: 1f a problem is serially decomposable, then there exists a macro table for

the problem.
Proof: To prove the existence of a macro table M, it must be shown that for cach fand J,

;18 cither undefined or exists according to definition 4. Hence, Vi,j for 1<ign
and j € V, cither: ' '

n

Case [: Sy= & in which case m;; is undefined, or

Case 2: S,ﬁé @ in which case Ise S,-j. Since all states ace solvable by definition, there
exists a macro m s.t. m(s)=g. Recall that

VseS

jr S=8 for 0<y<i—1. and 5;=j

Also, recall that g=(g,.g, . . . .gn). Since s€S;;, m(s)=g, and m is scrially decomposable,
then

my(sl.sz. .. .s).):my(gl.gz. . .gy)zgy for 0sy<i-1
and m;(s.8, ... 8= 5)=m;(8.8 - - - &im1 /)= &

where my and m; are the y-ary and i-ary functions, respectively, corresponding to m. This
is true independent of the values of's; .| through s,. Thercfore,

Vse Sy, m(sy.5, . . . ,sy)= g, for 0<y<i

Thus,
Vse S, m(s)eS; 4,

Hence, mis m,;. O

Note that total decomposability is merely a special casc of scrial decomposability. It is introduccd
prior to scrial decomposability for pedagogical reasons. In the remaindecr of this thesis, the term serial
decomposability will be used in formal contexts to refer to the general case which includes total

decomposability. The term operator decomposability will always refer to the general case.
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The Think-a-Daot problem exhibits « much richcr'l'nrm of serial decomposability that results in a
complex constraint on the solution order. Roughly, the cffect of an operator on a particular gate can
depend on the values of the gates above it This suggests that the solution order must include all the
gates at one horizontal level before any of the gates at the next lower level. More exactly, the cffect of
an operator on a particular gate depends only on the values of all of its "ancestors”, or those gates
from which there exists a directed path to the given gate. Thus, the constraint on the solution order is
that the ancestors of any gate must oecur prior to that gate in the order. The serial decomposability
structure of this problem is dircctly exhibited by the directed graph structure of the machine. Note
that the serial decomposability of this problem is based on the effects of the operators and not on

their preconditions. since there are no preconditions on the Think-a-1ot operators.

An extreme case of serial decomposability occurs in the Towers of Hanoi problem. Recall that the
variables correspond to the disks and the values correspond to the pegs. There are six operators, onc
for cach possible ordered pair of source peg and destination peg. The applicability of cach of the
operators to cach of the disks depends upon the positions of all the smaller disks. In particular, no
simaller disk may be on the source or destination peg of the disk to be moved. This totally constrains
the solution order to be from smallest disk to largest disk. We describe this as a boundary case since it

exhibits the maximum amount of dependence possible without increasing the number of macros.

Opcrator decomposability in a problem is not only a function of the problem, but depends on the
particular formulation of the problem in terms of state variables as well. For example, under the dual
representation of the Eight Puzzle, where state variables correspond to positions and valucs
correspond to tiles, the operators arc not decomposable. The reason is that there is no ordering to the
positions such the cffect of cach of the opcrators on cach of the positions can be cxpressed as a

function of only the previous positions in the order.

We conclude this scction with the result that a macro table for a problem contains a solution to
cvery problem instance.

Definition 14: Given a macro table M, a macro sequence mg is a scquence of macros
from the table of the form

msz(mljl,mzjz, cee ,m"j”)

Theorem 15:  Given a problem P and a corresponding macro table M,

VseS, dm, in Mst. my(s)=g

Proof: By the dcfinition of a macro table,

Vilsisn, VseS,-. 3m,»j St m(S)=$;4,

Since
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VseS seS, and S,, ={g}.

A= . . —
VseS, Hlll.yz(lnul,m Sy ) stomg(s)=g. O

Yyt
6.4. The General Theory of Macro Problem Solving

In the above discussion we restricted our attention to problems whose states are described as
vectors of state variables, and tor which the subgoals are to achicve goal values for the individual state
variables, W¢ now consider a generalization of the theory which is independent of any particular
state deseription and which cncompasses arbitrary subgoals. This gencralization is necessary because
there exist problems, such as the Fool's Disk, for which good subgoals are known, but the subgoals
arc more complex than simply achicving values for particular state variables. In fact, the most
cfficicnt strategy known for Rubik’s Cube is based on such a sct of complex subgoals. This gencral
theory is built upon the theory of the General Problem Solver developed by Newell, Shaw, and

Simon.

In the classical GPS theory, a problem space consists of a sct of states, with no further structure
imposcd on the state descriptions. In addition, there arc a sct of differences or subgoals. [f we restrict
our attention to the case of a single set of goal states, then cach difference can be associated with the
sct of states for which the corresponding subgoal is satisfied. Given an ordering to the subgoal scts, a
hicrarchical structure of nested sets can be defined where cuch set is the interscction of all the
previous subgzoals. The largest set in this structure is the sct of initial statcs and the siallest is the set
of goal statcs. An additional restriction placed on problems to be solved by GPS is that it must be
possible to start anywhere in the problem space and proceed toward the goal sct by moving into

smaller and smaller containing sets without ever having to move into a larger sct from a smaller set.

We adopt this structure with one exception: we do not require the current state to always remain in
the current subgoal set or proceed into the next sct. However, if we only observe the macro problem
solving process between macro applications, this restriction is observed. This is a consequence of the

fact that our method can be viewed as a generalization of GPS to include macros.

What additional structure do we have to place on this model to allow macro problem solving to be
cffective? From the initial state we must be able to apply onc of a limited number of macros in order
to achicve the first subgoal, or to movc into the first subgoal sct. Hence, the initial sct, which is the
cntire problem space, must be partitionable into a smail number of subsets or blocks, such that for

any state within a particular block, the single macro corresponding to that block can be applied to
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that state with the result that the state will be mapped into the next subgoal set. The number of blocks
of the partition cquals the number of macros in the first column of the macro table. Similarly, the set
corresponding to the first subgoal must be paititionable into a small number of blocks so that a single
macro will map any member of the same block into the next subgoal set. ‘There must cxist such a

partition for cach subsct of the problem space corresponding to a particular subgoal.

Note that the only restriction placed on these partitions is that the number of blocks they partition
aset into be small, relative to the size of the set. [n particular, there is no requirement that the blocks
be of the same size or structure. Furthermore, partitions of differcot subscts are not constriained to be

related in any way, structurally or otherwise.

The restricted form of our theory in terms of vectors of state variables is a special case of this more
general formulation. The overall decomposition of the problem space into sets of subgoals is based on
the number of state variables whose values are known. The largest sct is the entire space. The next
subgoal set contains all those states in which the first variable in the solution order is equal to the
arget value at that stage. The next subsct consists of those states for which the first two variables are
cqual to their respective target values at the next stage, and similarly for the rest. The partition of
cach subsect is based on the diffcrent possible values of the next state variable at that stage. For
cxample, at the first stage, the cntire space is partitioned into blocks such that for all the states in the
same block, the first state variable has the same value. The number of blocks cquals the number of
possible values of the variable. Similarly, the partition of the next subsct is based on the values of the

sccond state variable in the solution order, etc.

The advantage of the general theory over this special case is twofold: First, it is not constrained by
any particular structural description of a state in the problem space. Sccondly, it allows the macro
technique to be used in combination with arbitrarily complex differences, such as those developed by
Goldstein's program and related techniques. [n general, such differences or subgoals may be

cxpressed in terms of complicated functions of the state components,

6.5. Conclusions

We have presented a theory of the Macro Problem Solver that expiains why the technique is
cffective for the example problems and characterizes the range of problems for which it is useful. A
nccessary and sufficient condition for the success of the method is that the primitive operators of the
problem spacc be dccomposabfe. If the operators arc totally decomposable, then any solution order

results in a small number of macros, while serially decomposable operators constrain the solution
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orders that result in a small number of macros. In ;ldtli[i(;ll. an important generalization of the
mcthod is based on the two observations that the target values of the state variables necd not be their
goal values, and that they need not renmunn constant from one stage to the next, Finally, a general
theory of macro probiem solving is presented that applics to arbitrary state descriptions and

arbitrarily complex subgoals.
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Chapter 7
Performance Analysis

We have scen scveral example problems for which the Macro Problem Solver is effective,
techniques for learning the macros have been presented, and a theory of why the method works has
been developed. We now turn our attention to an analysis of the performance of the method. The
goal of this exploration is to be able to characterize quantitatively how well macro problem solving

works.

7.1. Summary of Methodology and Results

There arc three obvious criteria for gauging the performance of this method: the number of
macros reguired to fill the macro table. the amount of time necessary to learn the macros, and the
number of primitive moves required to solve an instance of the problem., We will analyzc cach of

these factors in turn. .

Since the values of these quantities will depend on the problem, they must be expressed in terms of
some problem dependent-parameter. [n traditional computational complexity theory, this parameter
is often the “size™ of the problem, which roughly corresponds to the number of primitive components
of the problem. [n our case, the number of state variables would correspond to the size of the

problem.

Our analysis, however, will not be hased on the size of the problem but rather on different

L}

mcasures of the “difficulty” of the problem. For example, the number of primitive moves required
for a solution will be expressed as a function of the optimal number of moves. There arc two rcasons
for this approach. Onc is that the analysis is tractable in this model and produces interesting results.
This is due to the fact that the performance of our method is more intimately related to the difficulty
of the problem than to the size of the problem. The second reason for adopting this approach is that it
allows realistic comparisons with other problem solving strategics for the same class of problems, and

with optimal solutions.
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Three main results wiil be presented:

o The number of macros is cqual to the swm of the number of values for cach of the state
variables, as compared with the number of states in the space which is the product of the
number of values for cach of the state variables.

o ['he total lcarning time is of the same order as the time required to find a single solution
using conventional scarch techniques.

o ['he fength of the solution is no greater than the optimal solution length timies the number
of state variables. In addition, an average case analysis of solution fength is presented that
correlates well with experimentally observed values for the 2x2x2 Rubik’s Cube.
Furthermore, for the Eight Puszzle and the 3x3x3 Rubik’s Cube. the solution lengths are
approximately cqual to or less than those of human strategics.

7.2. Number of Macros

The usefulness of the Muacro Problem Solver is based on the fact that an efficient strategy for a very
large number of problem instances can be implemented with a very small numbcer of macros. Hence,
the actual number of macros required for a given macro table is of obvious interest. This is also a
measurc of the amount ot knowledge required by the strategy. or the arnount of space that must be

used by the problem solving prograim.

7.2.1. Number of Macros Related to Size of Space

Ve begin with some preliminary definitions and lemmas.

Definition 1: An operator o is appiicable to a state s iff o(s) 7 s.

A macro m=(0,,0,, .. ..0g) is applicable to a state s iff

Vilzick 0;0,-,(...(08)... ) Z0i-i(...(05)...)
Definition 2: A function fis information preserving iff
VsteS st fis applicablc tosand t, f(s)=1f(t) implics s=t.

Lemma 3: A macro is information preserving if each of the operators in it are
information preserving,

Proof: In order to prove this result, it suffices to show that the composition of two
intormation prescrving functions is information preserving.

Assume that g and h are information preserving functions and let goh be the
composition of g with h. By dcfinirion, VsteS st goh is applicable to s and t, h is
applicable to s and t, and g is applicable to h(s) and h(t). Assume that

g(h(s))=g(h(t))

Since g is information preserving and is applicable to h(s) and h(t),
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h(s)=h(t)

Similarly, since h is information preserving and is applicable to sand t,

s=t

Thus,

VsteS, st goh is applicable to s and t. g(h(s))=g(h(t)) implics s=t

- Therclore, goh is information preserving. O

Definition 4; A problem P is information preserving iff Yo0<0. o is information
preserving,

Lemma 5: If £ is a total information preserving function from a domain D to a range R,
ad DNR=g, then |R| 2| D], where | R is the cardinality of the set R.

Proof: Assume | R} < | D]. Since every element of 1D must be mapped to some clement
of R, then by the pigeon-hole principle,

dxyehd xs2y st [()=Ky)

Furthermore, since DNR= G,

3x.y€ D st (x)525xAf(y) #yALX)=fy)Ax5£y

But this contradicts the assumption that f is information preserving.  Hence,
[Ri=(D]|. O

Definition 6; A problemn P is connected iff

VsteS, 3 amacroms.t. m(s)=t

Note that connectedness is a stronger property than solvability since it requires a path between
gvery pair of states as opposed to just a path from cvery state to the goal. The reader can casily verify
that all of our example problems arc information preserving and connccted. The following theorem is
the main result of this section.

Theorem 7: Given a problem P that is connected, serially decomposable, and
information preserving. then for all macro tables for P,

n
|S| = H | M| where M,={m;|S;# &}

=1

3 Proof: The proof is by induction on 4, the number of state variables in the problem.

Basis Step: Assume n=1. Then [S| is the number of different possible values for the
. single state variable. For cach of these values. there exists a unique macro to map it to the
goal value, including the identity macro, and there are no other macros in the macro table.

Hence,

n
S| =iM,| = [T Imy| for n=1
i=1 )
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Induction Step: Assume that the theorem is true for all problams with up to # state
variables and consider problems with 4 1 state variables. Since the S sets are mutually
exclusive and collectively exhaustive,

ISI=3_IS,|= ; IS,
S, F 2

jev
Since P is connected,
VjkeV st S,# B AS;5# B, dseS, teSy, and meO”
s.t. m(s)=t
where O is the set of all finite sequences of operators from O. Since P is serially
decoimposable,

VS€SU. m(s)eS,
If j=k then

[Sic! = |ij|
Otherwisc. if j5£ k, then

SiNSj=92
and since m is information preserving,

ISic] 2 1Syl

Since j and & arc completely symmetric in the above argument, we can interchange them
to yield -

Therefore,

Vj,k s.L. SU# BAS # D, |Sl/| =[Sl = |ng1|

Since all of the S, sets are the same size,

1Syl =x1Sy|
ij;g Y 18

where x is the numiber of values of j for which S,;7# & But that is just | M, |. Therefore,

ISI= 2 ISyl =M |-[S]
SU‘F %)

Howcver, Slgl is the sct of states for which the first state variable cquals its goal value

After mapping the first state variable to its goal value, the problem that remains is

isomorphic to a problem with onec less state variable. Hence, by the inductive assumption,

n
1Sig, 1 =TT 1Myl
i=2

Thus,




Performance Analysis 83

n

n
isi=isg [T =1T vy o

=2 =1

In other words, the total humber of states in the problem spacc is cequal o the product of the
number of macros in cach column,  This includes the identity macro in cach column in the row
corresponding to the goal value of that variable. By comparison. the total number of macros is only
the swm of the number of macros in cach column of the macro table. Thus, in gencral, the number of

macros will equal only a small fraction of the total number of states.

7.2.2. Minimizing the Number of Macros

What is the theoretical minimum number of macros required to solve a problem? Note that cach
decomposition of the state into a set of state variablcs corresponds to a factoring of the total number
of states into factors which are the numbers of possible values for cach variable. given that the vaiues
of the previous variables in the solution order have been determined. The number of macros is the
sum of these factors. Hence we can restate the problem of finding the minimum number of macros as
the tollowing problem: given a fixed value, how can it be fuctored so that the sum of the factors is a
minimum?

Definition 8: A facrorization ¥ of an integer n2 2 is a seque ncc of integers

(fifuo S st Vil<igk fi22 and Hf._,,

i=1

Yefinition 9: Given an integer n2 2. a minimal sum factorization H =(phy .. k) is a
factorization of n such that For all factorizations F=(f. . ... . fi) of n,

s 3

i=1 =1

Lemma 10:

VxZZ.yZZ. xXyzx+y

Proof: Since x>2and y 22,

Ju20 st x=2+aand Jb620 st y=2+b
xy=Q2+ a)2+ b)=4+2a+2b+ab
x+y=Q+a+Q2+b)=4+a+b
xy—=(x+y)=a+b+ab

Since a>0and 620,
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a+b-+ab20
xy—(x4-3)20

xyzx+y O

Theorem 11: The prime factorization of a number is a minimal sum factorization.

Proof: All factorizations of a number can be generated by multiplying pairs of nimbers
starting from the prime factorization, However, by the above iemma, no such
multiplication can decrcase the total sum.  Flence. the prime factorization must be a
minimal sum factorization,

Unfortunately, while this achieves the theoretical minimum, there is no guarantee that a problem
can be decomposed to this extent while still preserving operator decomposability. The above result
doces imply, however, that whenever a state variable can be divided into two or more variables
without violating operator decomposability, the result will be a reduction in the total number of
macros (cxcept for a variable with four values, which results in an equal number of macros). For
example, consider the 2x2x2 Rubik's Cube macro table in Table 4-3. Each stite variable encodes both
the position and oricntation of a particular cubie. However, the position and oricntation information
for cach cubic could be represcated by two scparate variables, provided that the position variable
precedes the orientation variable in the solution order for cach cubie. ‘This is because the cffect of a
macro on the oricntation of a-cubic depends on the position of that cubic. In other words, while the
original formulation of the problem is totally decomposable, separating position and orientation into

w0 separate variables makes the problem only scrially decomposable.

The resulting macro table is shown in Table 7-1. In this strategy, the position and oricntation of
cach cubie are satisficd in two scparate stages. Note that while the original macro table contains 75
non-identity macros, by scparating position and orientation into distinct variables, the number of

non-identity macros is reduced to 33.

7.3. Learning Time

In addition to the number of macros required to fill the macro table, the amount of time required

to learn the macros is an important performance parameter of the macro problem solving technique.

To address this issuc, we assume that we have the computational resources to search to a sufficient
depth to find all the macros and hence the macro composition technique is not required. We also will

assume that cach primitive opcrator has a primitive inverse. Recall that all the macros are acquired
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CUBIE POSITION ORIENTATION MACRO

DLF DR8 R2 F2

DLF DRF F

DLF uL8 u- F-

DLF ULF F-

DLF URB uz2 F-

DLF URF F2

DLF 1 F U- F2

DLF 2 F2 U F-

DRB DRF R-

DRB uLs U2 R2

DR8 ULF U- R2

DRB URB R

DRB URF R2

DRB 1 - RZ2 U- R

DRB 2 R- U R2

DRF uLs - R U2 R-

DRF ULF R U- R-

DRF URB "F- U F

DRF URF R U R-

DRF 1 R F R2 F- U R-
DRF 2 R U- F R2 F- R-
uLse ULF u

uLs URB u- -

uLs URF u2

uLB 1 U- R2 U2 R- U2 R2
uLB 2 R2 U2 R U2 R2 U

ULF URB F U R U- R- F- U-
ULF URF F U F-U- R- F- R
ULF 1 F R- F- U- R- U R
ULF 2 R- U- R U F R F-
UR8 URF U2 F2 U- F- 4 F2 U- R U- R-
URB 1 R U2 F2 R- F-U F-U R-U

URB 2 Uu- R U-F U-F R F2 U2 R-

Total number of non-identity macros is 33.
Average case solution length is 38.60 moves.

Table 7-1: Macro table for 2x2x2 Rubik's Cube scparating position and oricntation

85
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during a single search ot the problem space starting at the goal node. Thus, the fearning time depends
primarily on the branching factor of the spuce and the depth o which the search must go. The
exccution of the learning program is interleaved with that of the problem solver so that the learning
program only runs when a new macro is required, This ensures that the lcarning program will only

scarch to a depth neeessary to find aill macros.

We hegin with a sct of defintions aimed at capturing the depth of search required to find ali

macros.

Definition 12: The disrance between two states as the shortest length inacro that maps
one state to another, or

Vs,teS st. JmeQ® st m(s)=t. J(s.t)= MIN /(m)

m(s)=1t
where /(m) is the length of macro m which is the number of primitive operators in m.

Definition 13: The diamecer of a problem P is the maximum distance between any pair
of connected states, or

MAX d(st)
steS

Definition 14: The radius of a problem P with respect to the goal state g is the maximum
distancce to the goal state or

DP: MAX d(S.g)
SEN

FFor most problems, including all of our examples, the radius of the problein for all goal states will
equal the diameter. However, the radius for some goal states could be less than the problem diameter
for some problems.

Definition 15: A subgoal is a set of states. A given state is said to satisfy a subgoal iff it is
an clement of the sct. The particular subgoals we arc concerned with here are the sets

S; for l<isn+1

Recall that
S,=S and S,,,={g}

Definition 16: Given two subgoals S, and S,, the subgnal distance is the maximum
distance from any state in S, to the closest state in S,, or

D(S.S,)=MAX MIN d(s,t)
SESI lESz

Definition 17: Given a scquence of subgoals (S,.S,....S,S,,), the maximum
subgoal distance Dy is

Dg=MAX D(S,.S;+1)
1Sisn

Given a set of subgoals, the maximum subgoal distance is a better measure of the "difficulty” of a
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problem than the problem radius. In general, g will be less than Dp. A useful analogy here is that of -
crossing a stream on stepping stoncs. ‘The difficulty of the problem is related to the maximum

distance between stepping stones and not the width of the river.

We now formally define the inverse of an operator and the inverse of a macro.

Definition 18: The inverse of a function fis a function ! s.t.

VseS st fis applicable to's. 0~ o(s))=s

Lemma 19: For any macro m=(0,.0,, . .., 04). the macro m™ =(0, " 0g=, oL 0,
the inverse of m.

Proof: Instcad of providing the details of a formal inductive proof. we will simply show
that g™'el™! is the inverse of fog. By the definition of f~1,

VseS st fis applicable to s, T!(f(s))=s

substituting g(s) fors,

VseS st fis applicable to g(s), £~(f(g(s))=g(s)

applying g~ to both sides,
VseS st fis applicable to g(s), g~ '(f™'([(g(s)))=g~'(g(s)

By the definition ot g™,
VseS st.fis applicable to g(s) and g is applicable to s,

g~ (g =s

Since the applicability of g to s and f to g(s) implics that fog is applicable to s, g™*of™! is
the inversc of fog. [

We now turn our attention to the branching factor of a probleu. _pace.

Definition 20: Given a state s€ S, we define the branching factor b(s) as

VseS. b(s)=|{t s.t. teSAt£sA J0¢0 st ofs)=t}]

Definition 21: Given a problem in which cach operator has an inverse, the maximum
branching factor tor a problem P is defined as

Bp=MAX 5(s)-1
seS

The one is subtracted to cxclude the immediate ancestor of a given state in the branching
factor.

Definition 22: Civen a problem in which cach operatcr has un inverse, we define the
average branching factor as
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By= Y (b(s)=1)/]5]
SES

In other words, the average branching factor of a scarch space is the average number of states that

can be reached by the application of a pritnitive operator trom any given state in the space, excluding

the given state and its immediate ancestor.  The branching factor of a space can usually be
determined by examining the sct of operators. 'or example, if there arc no preconditions on the
aperators, as in Rubik’s Cube, then the branching factor is approximately the number of primitive

operators.

If there are preconditions, then we compute a weighted average of the number of operators
applicable for cach sct of preconditions, weighted by the probability of that set of conditions
occurring. For cxample, consider the Eight Puz.le. If the blank is in the center position, there are
four applicable operators, one of which must be the inverse of the last operator applicd. If the blank
is in a corncr, there are two operators with one being the inverse of the last operator. Finally, if the
blank is in the middle of a sidc, three operators arc applicable, onc of which is the inverse of the last
vperator. lgnoring the inverse of the last operator, and assuming that every position of the blank is
cqually likely, the avcrage branching factor of the space after the first move is
1/9:-34-4/9-14+4/9-2=15/9 or L.67.

We continue our analysis with the defintion of an optimal macro table,

Definition 23: An optimal macro 1able for a problem P is a complete macro table M in
which cach macro is the shortest possible macro that could occupy that slot in the table,
Formally,

Vm;eM,meO", if VseSy, m(s)eS;,, then /(m)> /(m;)

In order to simplify the complexity analysis of the learning task, we will analyze the tree-scarch
bi-directional scarch instcad of the hashing scheme. While it is casicr to analyze and its complexity is
of the same order as the hashing algorithm, the constant factors of this algorithm arc larger and hence

it is less cfficient. We repeat the statement of the algorithm below.

A breadth-first search of the problem spacc is performed starting from the goal state. As cach state
is gencrated, it is stored in a scarch tree where cach level of the tree corresponds to a different state
variable and diffcrent nodes at the same level correspond to different possible values for that state
varrthice. The ordering of levels of the tree from top to bottom corresponds to the solution order of
the state variables from first to last. Thus, each node »F the tree corresponds to an assignment of

values to an initial subsequence of state variables in the solution order.
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A state is inserted in the tree by filtering it down from the root node to the last existing node which
corresponds to a previously generated state. A new node is created at the next level of the uee and the
macro which generated the new state is stored at the new node. Since the states arc gencrated
breadth-first, this ensures that with cach existing node is stored a shortest macro which maps the goal

state to the initial subsequence ot values corresponding to the node.

When a new state reaches the last previously cxisting node while being inscrted in the tree,
composite macro is created as follows. [f i is the level in the tree, a is the existing macro, and b is the
new macro. then the macros aob™! and boa ™" are created. Since the states that result from applying a
and b to the goal state match in the first /i~ state variables, both (hese compousite macros arc
guaranteed to leave the first i— 1 variables of the goal state invariant. To determinc what value of the
" state variable would be mapped to the goal value, we apply the inverse of cach of the these macros,
which is the other member of the pair, to the goal state and note the resulting value of the i state
variable. [f the corresponding entry of the macro table is empty, it is filled with the new macro.

Otherwise. the new macro is discarded.

The following theorem is the main result of this section.

Theorem 24: Given a scrially decomposable problem P for which cach primitive
eperator has an inverse primitive operator, an optimal macro table M for P can be
generated in time O(nDB,,Ps’?), where n is the number of state variables, 8, is the
maximum branching factor of the space, and D; is the maximum subgoal distance for the
solution order embodicd’in the macro table M.

Proof: For 1 </<n, the optimal macro for m is the identity macro. Optimal macros
which are only onc move long can also be treated as special cases since there are at most
B of them. For all other optimal macros m; where j £ g, we can divide the sequence of
operators into two parts and label them a and b. Since aob=my,

Vxlsx<i-l, aob (8.8 ....80=8, and a;0bi(g. g ....8i-1.J)=g;
Thus,

Iveiv=(mv, ... 0) st Vx 1exsi-1,

b,(g.8 ....80=vy and a,(v,v,...,v,)=g, and

hi(g 8o 8imu )=V and a;(nuvy, .. V)= g

Since my; is an optimal macro, cach operator must change cach state it is applicd to, or else
that opcrator could be removed from the macro to create a shorter macro with the same
effect. This together with the fact that each operator has an inverse implies that each
subsequence of my; has an inverse. In particular,




90 LcarningtoSolveProblemsbyScarchingforMacro-Operators
. g g p

Jae0" st Vix lexs<iatig g ... 80=v,
Thus, ¢

Velex<i=l bgugn ... 80=v =05 (2.8 ... 89

Therefore, cach optimal macro my; can be decomposed into two parts which, when applicd
to the goal state, generate states which match in their first =1 compaonents,

Iollowing e abuve argument in reverse order shows that the converse is also true:
Given two macros b and a™* which when applied to the goal state gunerate states which
maich in the first /=1 components, then aob [caves the first i— [ components of the goal
state invariant, 1f the resulting value of the i state variable is j when the macro is applied
o the goal state, then the inverse macro will map j to g;. Since our problem is serially
decomposable,

VmeO" if 3565,7 s.. m(s)eS,; .. then VseS,-j, m(s)eS;

Hence, m=m;;.

Dividing 1 macro as close to in half as possible minimizes the length of the longest part.
Thus. a scarch to depth [D/2] suffices to find all macros up to length D. Since the
subgoal distance /XS,,S,) is the maximum length macro required to map any clement of
S, to some clement of S,, and the maximum subgoal distance, Dy, is the maximum of
these values for the sequence of subgoals in the solution order, 1 is cqual to the longest
macro in an optimal nacro table. Thus, the scarch must procced to depth D, /2]. Since
B,, is the maximum branching factor for any node except the root node, the total number
of nodes generated in the breadth-first scarch is Q(B,,Ps’?), since the branching factor of
the root node and the extra .5 generated by the ceiling function can buth be absorbed in
the constant cocfficicnt,

Generating cach state requires an operator to be applied which we assume requires
O(n) operations. Inscrting a state into the scarch tree also requires O(n1) operations since
there are # levels to the tree. Creating the composite macros requires O(n);) operations
since /2 operators must be applied to compute the cffect of the inverse of the macros
on the goal state to determine the correct row for the macros.

Thus, the total amount of time to gencrate an optimal macro table is

O(nDB,P s’y O

Note that in practice, the maximum branching factor B, can usually be replaced by the average
branching factor B, The necessary condition is that after a short initial scarch, the expected

branching factor of a state be cqual to the average branching factor.

How does this compare with the the running time of a standard problem solving program trying to

solve a particular instance of the problem? We assume the problem solver uscs the same set of
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subgoals with the same ordering and can perform bi-directionsl scarch as well, but has no additional
knowledge about the problem. In other words, the problemn solving program is given the same
information about the problem as the learning program. Using an ordinary scarch with subgoals, the
probicm solver performs a bi-dircctional search between the initial state and the first subgoal, then
performs another bi-directional scarch between the first subgoal and the sccond subgoal, and
continues similarly until the final goal is reached. 'The running time of this algorithm is dominated by
the depth of the longest scarch, which is . Hence, the total running time is 0(:1/))/3,,1’).9/3). The
learning program requires only a single scarch to depth Dy, Thus, the runtime of the learning
program which learns an efficient strategy tor solving atl instances of the problem is of the same order
as that of a standard problem solving program, using the same knowledge, that solves just onc

problem instance!

7.4. Solution Length

So far. we have considered the amount of knowledge required to solve our example problems and
the amount of time necessary to acquire that knowledge. We now turn our attention to the quality of
the resulting solutions. In particular, we will analyze the lengths of the solutions gencrated by the
macro problem solver in terms of the number of primitive moves. We will first consider the worst-
case solution length, then the average case based on a given macro wble, and finally the expected
solution length independent of any particular macro _table. In addition, typical solution lengths

generated by human problem solvers will be considered.

For problems such as Rubik’s Cube and the Eight Puzzle, the problem radius, Dp, is only known
for versions of the problem small enough to allow cxhaustive scarch of the cntire state space. Thus,
optimal solution lengths have been determined experimentaily for the 2x2x2 Rubik's Cube
(11 moves) and the Eight Puzzle (30 moves [Schofield 67]) but are not known for the 3x3x3 cube or
the Fifteen Puzzie. Tt follows that all known algorithms for these problems, other than exhaustive
scarch, may yicld suboptimal solution paths. A lower bound on the problem radius is the depth in
the scarch tree, starting from the goal node and using the average branching factor, at which the

number of nodes first exceeds the nmumber of states in the problem space.

We define solution length as follows,

Definition 25: Given a macro scquence mg, we define the solution length as the total
number of primitive opcrators, or

Vm, in M, {(m)= Zl(mijl),
i=1

where /(m) is the length of macro m.
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7.4.1. Worst Case Results

The goal of worst-case analysis is 0 determine the maximum solution length that could be
g y I

generated to solve some problem instance.

Theorem 26: The worst-case solution fength is equal to the sum of the subgoal distances
for the given solution order, or

n
MAX [(m)= Y _ D(S:Si1)
SES

i=1

Proof:

n
MAX [(mg)= Y MAX /(my)
SES

=1 m,-j

However, by the definition of subgoal distance,

Vilsisa MAX mp)=D(S,S;,,)

“‘ij
Therefore,

SES

n
MAX /(m)= D _ D(S;S;,) O
i=1

Two weaker corollaries follow immediately from this result.
Corollary 27:

Vses. [m) g n-Dy
wherc /N is the maximum subgoal distance for the solution order.
Proof: From the above theorem, we know that
n
VseS, [m)< Y D(S;Sivy)
i=1
By the definition of Dy,
Vilgi<n D(S;S;.) <Dy

Thus,

n n
D D(SiSi )< D Dy=n-Dy
i=1 i=1

Thercfore,

Vses, m)<n-Dy O

Corollary 28:
VseS, (mg<n-Dp

where Dpis the radius of the problem P with respect to the goal state g.
Proof: From the above corollary, we know that
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VsesS Hmy<n-Dg

By the definition of Dp, Do Dp. Thus,
Vses. ltm)<sn-Dp O

Note that given an optimal macro table, the Macro Probiem Solver solutions are the optimal
solutions that pass through the given sct of subgoals, This is due to the fact that cach of the individual
macros are optimal, The reason that these solutions are not optimal in the globual sensc is that the

global optimal solution nced not pass through the given subgoals.

For the 2x2x2 Rubik’s Cube, D= Dp=11 moves. Since there are 6 non-empty columns of the
macro table, this produces a worst case bound of 66 moves. Summing the lengths of the longest
macros in cach column for the macro table in ‘[able 4-3 reveals an actual worst case soltdon length of
38 moves. This is duc to the fact that the maximum length macro in cach column except the last is

less than 11 moves long.

7.4.2. Experimental Average-Case Results

While the coal of worst-case analyses is to bound the longest possible solution length, average case
analysis is concerned with the actual solution length for a particular problem, averaged over all
probicm instances. In order to do an average case analysis, some assumption must be made about the

distribution of problem instances. We assume that all possible problem instances arc equally likely.
Definition 29: Since we assume that all possible initial states arc cqually likely, we

define the average-case solution length L 4 to be the solution length for each particular
initial statc averaged over all possiblc initial states, or

Ly= Y lmy/|5]

SES

Lenuna 30: Given a macro table for a problem P which is connected and information
preserving, there exists a bijection from S to M, where M is the set of macro sequencces
from the macro table for P.

Proof: By theorem 7, we know that
n

Is1= T Iyl

i=1
Since
n
IM| = [T IM,], then |S|=IM|
=1
By thcorem 15 in chapter 6, there exists a total mapping from S to M. Since P is
information prescrving and all the macros arc applicable to their respective states,




94 I.carningtoSolveProblemsbyScarchingtorMacro-Opcerators
VsiteS, m(s) =my(t) mplics s=t

Henee, the mapping is onc-to-onc, Thercfore, the mapping is a bijection. O
Theorem 31: Given a problem that is connected and information preserving, the
average case solution length is equal to the sum of the average macro length in cach
column of the macro table, or
n
Ly=d_ 3 lm)/|M,]
1=t jevV
Proof: By dcfinition,
4= lm)/]|S]
S€ES
Since there is a bijection from Sto M,
> umy/Si= Y Imy/IS|
SES mg€ M

[fwe let x,; be the number of times that my; appears in an clement of M, then
1

S°oumg/1S1=d_ S x;im,)/ S|

mg& M =1 jeV
Since M is the set of all possible macro sequences,
4]
Vijx,= 1;[ IMel =TT IMel7 v = 1S171m)
RF= k=1

Therefore,

n n
L= S USIZIMDxCm)/1Sh= D> 1myy/1M,| O

i=1 jev . i=1 Je¥

For the 2x2x2 Rubik’s Cube macro table in Table 4-3. the average solution length is 27 moves. This

is signiticantly less than the 38 move worst-case solution length from the some table.

Note that this result depends on the particular solution order chosen for the macro table, as docs
the worst-casc result. In order to facter out this variable, average case solution lengths were computed
for 25 randomly gencrated solution orders for the 2x2x2 Rubik’s Cube. These solution Iengths were
then averaged and the result was 28.39 moves with a maximum variation from the smallest to the

largest 0f 9.8 percent.

7.4.3. Analytical Average-Case Results

Under certain assumptions. we can also predict analytically what the average case solution length
will be, independent of any particular solution order. The basic idea is that since the first subgoal
only constrains the value of the first state variable, there will be many states in the space that satisfy

the first subgoal and hence we would expect to have to examine only a small number of states before
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finding one. Similarly, since the sccond subgoal constrains the first two state variables, we would
cxpect to look at a few more states in order w find one satistying this subgoal, and <milarly for the

third subgoal, ctc.

To make this idea precise, note that given the number of different values for the first stwe variable,
we can compute the probability that any given state will satisfy the first subgoal. This gives us the
expected number of states that would have to he examined before finding such a state. Then, given
the number of new states that are generated at cach depth in the search, we can compute the cxpected
depth of scarch required to find a state satisfying the subgoal.  The same computation is then

repeated for the (irst two state variables, the first three, cte.

This analysis is based on the assumption that the states are randomly distributed throughout the
problem spacc. without any particular bias. For example, we assumc that two states that match in all
but vne state variable arc no closer together in the space than any two random states. The data
reported in Table 2-3 suggest that this assumption is fairly accurate in the casc of the 2x2x2 Rubik’s
Cube.

We quantify this analysis in the detinitions and theorem below,

Definition 32: The average subgeal Jistance 1 ,(S,S; .|} is dic average over all states in
S, of the distance to the closest state in S; |, or

D4(S:Siv)= Y MIN d(st)/|S]
5€5; L€5i41

Definition 33: A sequence of subgoals (S,,S,, . .., S, ) is uncorrelated if

Vilsign Dg(S;S;4+)=D4S.Siey)

or in other words, the states in successive subgoals are no closer together on the average
than any arbitrary states in the problem space.

Definition 34; 'I’lll)c expected solution length for a problem P is
S ke
k=0

where % is a solution length, Dp is the radius of the problem. and /(&) is the probability
that given an arbitrary problem instance, the macro sequence which solves it is of
length 4.

Theorem 35: Given a problem P and a macro table based on an uncorrclated sequence

of subgoals, the expected solution length is
n+1

D
> i d-((1= P)ld—(1 = PyVa+Ld)
i=2 d=0

where P; is the probability that a given state is an clement of S;, Ny is the average number
of states that first occur at a distance d from any given state, and Ly is the average number
of states that occur at a distance less than d from any given state,
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Proof: Iirst, note that

Vil<icn+l £2=15,/]S|

et P y(S,=)) be the probability that given a state in S, the closest state in S; is at
distance d.  Since we assume that successive subgoals in the solution order are
uncorrelated,

Vilsisutl, Py(S,2)=PyS)=Py

The probability of finding a state in S, at a distance d or less is one minus the probability
of not finding it, or

d
Z P{k =1—(1—- I’I)Nd*‘ Lq
k=1
Similarly, the pml?jability of finding a state in S, at a distance less than dis
|

S Py=1=(1-P)ld

k=1
Therefore. the probability of first finding a state in S; at distance exactly o is the
probability of finding it at a distance J or less minus the probability of finding it a distance
less than d. or :

d d-1
Z Pfk— Z Plk‘:l,[d:(l_'P[)l‘d-'(l—]’i)Nd* Lgq
k=1 k=1

The expected Iength of the i— 1% macro in a macro sequence is the cxpected distance to
first reach a state in S, from a state in S;..,, or

Dp
i (I' Pid

d=0
Therefore, the expected solution length s
n+1 D n+1 D
S S dre= 3 Y (1= Ppla=(l=PpVat ) O
i=2 d=0 i=2 d=o

The result of this computation for the 2x2x2 Rubik’s Cube is an expected solution length of 28.73
moves, independent of any particular macro table or solution order. This is within 1.2 pereent of the
cxperimental average solution length of 28.39 moves, computed by averaging the average solution

lengths for 25 different macro tables.

7.4.4. Comparison with Human Strategies

This scction compares the average solution lengths gencrated by the Macro Problem Solver with
solution lengths produccd by human strategices for the Eight Puzzle and the 3x3x3 Rubik's Cube. For -
the Eight Puzzle, Ericsson [Ericsson 76] found that the average solution length generated by ten
human subjects on cight different problem instances was 38 moves. This is within 5% of the 39.78

move average case solution length computed from the macro table in Table 4-1. An informal survey

e
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of ten people who could solve Rubik's Cube resulted in an average solution length of 125 primitive
moves, where a 130 degree twist is counted as a single primitive move. This is significantly longer
than the 86.38 move average case solution ]ength based on the macro table of Table 4-4. Thus, we
find that for these problems, solutions generated by the Macro Problem Solver are close to or

superior to those of humans in terms of number of primitive moves.

7.5. Conclusions

We have analyzed the performance of the macro problem solver along three different dimensions:
the number of macros, the learning time, and the length of solution. In cach case, we compared the
performance measure to some measure of the "difficulty” of the problem, including number of states
in the space, time to scarch for a single solution, and optimum solution length, respcctively. We
found that:

e Whereas the number of states is the product of the number of valucs for each state
variable, the number of macros is the sum of these same quantities.

e The Icarning time is of the same order as the time required to search for a single solution
using standard tcchniques.

o The solution lengths are less than or cqual to the optimal solution length times the
number of state variables. In addition, we were able to predict analvtically average case
solution lengths independent of solution order, and achieved very good agreement with
experimentallv determined values in the case of the 2x2x2 Rubik’s Cube. Furthermore,
for the Eight Puzzle and the 3x3x3 Rubik’s Cube, we found that the average solution
length is, respectively, very close to and less than the solution lengths generated by
human problem solvers.

Numerical values of these measures for the example problems are summarized in Table 7-2.
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PROBLEM Distp Dist, Len, Len, macros learn

Eight Puzzie 30 14 39.78 64 35 .

Fitteen Puzzie >42 24 139.40 214 119 :10

2x2x2 Rubik's Cube 11 11 27.00 33 75 :18

3x3x3 Rubik's Cube >17 12 86.38 134 238 14:28

Tower of Hanoi 7 3 7.33 11 6 *
(3 disks) ‘

Think-a-Dot 9 4 7.580 15 7 .

LEGEND

Dist problem radius or maximum distance to the goal state

Dist, maximum distance between successive subgoals

Len, average case solution length for the Macro Probiem Solver

Len, worst case solution length for the Macro Problem Solver

macros number of naon-identity macros
learn the amount of time in seconds to learn tite macros using

bi-directional search
* reprasents less than one second

in the macro table

Table 7-2: Experimental performance measures for example problems
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Chapter 8
Reflections and Further Work

This chapter presents some reflections on this work, and suggests some directions for further
rescarch atong these lines. Further work includes reducing solution lengths and learning time by

selection of solution orders and target valucs, and combining macro problem solving with other

problem solving methods such as operator subgoaling, macro gencralization, and problem
decomposition. A measure of problem difficulty is proposed, based on the branching factor of the
problem space and the length of the largest gap between two successive subgoals. [n addition,
macro-opcrators are viewed as a general representation for knowledge, taking cxamples from
thcorem proving, cumputer programming, and road navigation. [Finally, the usc of macros for
representing knowledge in arbitrary problem spaces is considered, along with the notion of lcarning

by scarching for macro-operators.

8.1. Reducing Solution Length and Learning Time

Two important parameters to the macro learning program are the solution order, or the scquence in
which the state variables arc mapped to their target valuecs, and the actual set of target values
themselves. For some problems, the choice of solution order and/or target values can have a large

impact on the cfficiency of the resulting solution and lcarning time.

8.1.1. Solution Order Selection

As demonstrated in chapter 6, in order to generate a macro table with a minimum number of

- macros, the solution order is constrained by the scrial decomposability of the operators. More
precisely, the solution order must be such that the applicability and the effect of any operator on any

. given state variable depends only on that state variable and previous ones in the solution order. For
some problems, such as the Towers of Hanoi, this condition totally constrains the solution order and

no further sclection is possible. However, for other problems, such as Rubik's Cube, operator

dccomposability places no constraints on the solution order and hence it must be selected by other




FlllllllIIllIIIIllIIlIIIIllIIIllIIIIIIIIIllllIIIllIlIIllIllIIIlllIllllIIIllIIlllIlllIIIIlIIIIIIIIIIIIIIIIIIIIIIT‘

100 Learning to Solve Problems by Scarching for Macro-Operators

means. For problems such as the Eight Puzzic and Think-a-Dot, the solution order must be sclected

within the constraints imposed by operator decomposability.

FFor the 2x2x2 Rubik’s Cube, 25 different sotution orders were randomly gencrated and the average
casc solution length was computed for cach of the resulting nacro tables. The variation among these

solution lengths was less than ten percent, implying that for this problem the choice of solution order

has very little cffect on the efficiency of the resulting solution. However, for problems such as the
Eight Puzzle this is not the case. Table 8-1 shows a macro table for the Fight Puzzle based on a
solution order that was deliberately chosen to result in an inefficient solution strategy. The average
number of primitive moves required to solve an instance of the problem using this macro table is

58.06 us compared with the 39.78 moves required using the macro table in Table 41

TILES
0 2 ] 4 8 1 6
0
2 U
P 6 0 URDDLY
0
$4 R LDRU LURD
1
T8 L RDLU RULD RDLLJRDRUL
I .
0 1 UL DRUL ROLURULDDRUL LORRULDLUR DLURRDLULDRU
]
S 5 OR LURDLDRY ULDR RULDLURRDL ULDRURDLLURD NDLUULDRURDLLURDDRUL
3 UR DLUR LDRULURDDLUR ROLULDRRUL OLURDRULLDRU RULDDLURRDLULDRUURDL LDRUURDLULDRRULDOLUR
7 DL RULOROLU URDL LURRDLULDR ULDRRULDLURD RDLUULORARULDLURDORUL LORUURDLLURDRYLODLUR

The averige case solution length is 58.06 moves.
Table 8-1:  [ncfficient macro table for the Eight Puzzle

For most problems. the solution order will have an effect on the efficiency of the resulting
solutions; the 2x2x2 Rubik's Cube is an anomaly in this respect. Unfortunate'y, one cannot predict
a priori what solution order will result in the most cfficient solution strategy. Rather, heuristics must
be used to sclect a solution order which will result in a reasonably efficient strategy. Such a heuristic

was used to determine the solution order for the 3x3x3 Rubik’s Cube macro table in Table 4-4.

The heuristic that was used is to select a solution order such that at any point in the ordeér, if we
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assume the previous state veriables are fixed and not allowed to change, the amount of freedom of
the remaining state variables, or the mobility of the remaining problem components, is maximized.
‘The heuristic is applied as follows, Iirst, the binary matrix shown in Table 8-2, using the Eight Puzszle
as an cxample, is constructed. The rows correspond to the positions of the tiles and the columns
correspond t the primitive operators, represented by the pair of positions they affect, ignoring the
dircction of the move. The matrix contuins a one in every element where the operator associated with

the column affects the position associated with the row.

OPERATORS

1-2 1-8 2-3 2-B 3-4 4-B 4-5' 5-6 6-B 6-7 7-8 8-B

B 0 0 0 1 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 0
P 2 1 0 1 1 0 0 0 0 0 0 0 0
g 3 0 0 1 0 1 0 0 0 0 0 0 0
% 4 0 0 0 0 1 1 1 0 0 0 0 0
(I) 5 0 0 0 0 0 0 1 1 0 0 0 0
g 6 0 0 0 0 Q 0 0 1 1 1 0 0
7 0 0 0 0 0 0 0 0 0 1 1 0
8 1 0 0 0 0 1 0 0 0 0 0 1

Table 8-2: Opcrator-position incidence matrix for Eight Puzzle

Given this matrix, a solution order is generated by first sclecting a position that is affected by a
minimum number of operators, in this case a corner position, and the tile which occupics that
position in the goal statc becomes the first variable in the solution order. Next, all the columns
(operators) which affect that position are deleted from the matrix and again a position affected by the
minimum number of remaining operators is sclected. Tics are resolved by selecting positions adjacent
to those alrcady sclected, and ties still remaining arc resolved arbitrarily. This process is continued
until the entire solution order is determined. In the case of the Eight Puzzle, onc solution order
gcncfatcd by this algorithm, depending on how the arbitrary choices are resolved, 1s
[B123456738).

Note that this is not the only possible technique for gencrating solution orders. Another idea® is to

8suggestcd by Bruce [ucas




102 i | carning to Solve Problems by Scarching for Macro-Operators

determine the solution order dynamically during the macro lcarning phase, based on the state
variables that arc left invariant by the shortest macros. Further rescarch is needed to evaluate these
and other methods with respect to the cfficiency of the solution strategics they generate and the

cfficiency of lcarning the macros.

8.1.2. Target Value Selection

In addition to solution order, another paramcter of the Macro Problem Solver that can effect
solution cfficiency and learning time is the target values to which the state variables are mapped in
the intermediate states of the sofution. As shown in chapter 6, these target values need not be the goal

valucs until the final macro is applied.

In fact. thesc extra degrees of freedom in the macro table allow us to construct slightly more
cfficient strategics for some problems than those generated by using goal values as targets for the
intermediate states. Table 8-3 shows another macro table for the Eight Puzzle. This macro table is
bascd on intermediate arget values (shown in table 8-4) that are different from the goal values at
some points. For example, after the 1 tile has been placed in the upper left hand corner, if the 2 tile is
placed in its goal position next to it, in general it will have to be moved in order to get the 3 tile to its
position. A better strategy is to place e 2 tilc in the 3 position, then the 3 tile can be placed below it,
and both tiles can be "rotated” into their goal positions. The same stratcgy is followed in the case of
the 4 and 5 ules. Another technigue is to leave the blank in the 4 position after the 2 and 3 tiles are
corrcctly placed. instead of returning it to the center. Similarly the blank is left in the 6 position after
the 4 and § tiles are placed. Both these techniques are incorporated into the macro table in Tablc 8-3,
with a conscquent slight decrease in the average number of moves required for solution, from 39.78
t0 39.14. ' |

‘The reason the difference is so small is that whenever any target value changes from onc subgoal to
the next, the chance of not having to apply any macro at that stage, is lost, and hence the average
solution length tends to increase. However, the point of this example is to demonstrate that goal

target values do not necessarily result in the most efficient solutions.

Another example is provided by the Towers of Hanoi problem. In Chapter 4 we found that using
goal values for the target values resulted in an incfficient solution strategy for this problem. The
macro table for the 3-disk problem in Table 4-6 requires 11 moves to solve the problem from the
standard initial statc in which all disks arc stacked on one peg, while the optimal stratcgy only
requircs 7 moves. In fact, 11 moves is the worst case solution length for the macro table and 7.3

moves is the average case, while 7 moves is the worst case solution length for the optimal strategy.
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TILES
0 1 2 3 4 5 6
0 RULDR D
1 UL
P2 U ROLU LDRU DRUULLDRADLLUY
0
S 3 UR DLURRDLU
I
T 4 R LDRURDLU DLUR DLU LDRRUULDROLLUUR
I
0 5 DR ULDRURDLDRUL LURDDLUR LURDDLUY R
N
S & D URDLDRUL ULDRDLUR ULDRDLUY URD LUR
7 DL RULDORUL URDLULOROLUR URDLULORDLU URRDLLURDO URDLLUR ROL
8 L ORUL - RDLULDRRUL RULLDROLY RRULDLURD RULDLUR DRULD

The average case solution length is 39.14 moves.

Table 8-3: More cfficient macro table for Eight Puzzle

TILES
0123456738

SOLUTION
STAGE

W =O
(=3 =R S = N = )
e s e e
NN N W
WWww

& b

5
56

Table 8-4: Taget valucs for Eight Puzzlc macro table

By changing the target values, we can generate a macro table that produces thé optimal solution for
any given initial state. For example, the macro table in Table 8-5 is based on the same goal state (all
disks on peg C). and the target peg for the smallest disk in the first column is peg C, but the target
peg for the two smallest disks in the second column is peg B. This macro table produces the optimal
solution for the initial state where all disks are on peg A, but its average case and worst case solution

lengths arce identical to those of the macro table in Table 4-6.

Can we build a macro table for the Towers of Hanoi pmt!~m that produces the optimal solution

for all initial statcs? The answer is no, not with a small number of macros. The reason is that the
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DISKS
1 2 3
p A AC AB CB AC BA BC AC
g B BC CB BC BA CA BC AB AC BC
> C CA CB AB BA BC AC

Tabhle 8-5: Muacro tabie for three disk Towers of Hanoi problem

optinal target peg for a given disk depends on the positions of all the larger disks. For example, in
order to move the largest disk from its source peg to its destination peg, the sccond largest disk
should be targeted for the "other™ peg, that which is neither the source nor the destination peg of the
largest disk. Similarly, the optimal target for the next smallest disk depends on the source and
destination of the next larger disk, which depends on the next larger disk, ctc. The problem is that the
positions of the larger disks arc not known when the macros are generated because the solution order

constrains us to position the disks in order of increasing sizc.

In general, the sclection of target values and their cffect on overall solution cfficiency is an arca that

requires further study.

8.1.3. Simuitancous Subgoal Satisfaction

Onc final technique for improving the cfficiency of solutions gencrated by the Macro Problem
Solver is simultancous subgoal satisfaction. In the examples so far, we have tricd to decompose a
problem into as inany subgoals as possible in order to minimize the number of macros and the depth
of scarch required to learn them. However, by solving two or more state variables simultaneously, the
number of moves required to solve them both will in general be less than the sum of the moves
necessary to solve cach one individually. The penalty is that the number of macros required increases
sharply since the number of macros nceded to solve two state variables simultancously is the product
of the number needed to solve them individually. The limiting casc of this technique is solving all the
state variables at once. in which casc the number of macros cquals the number of states in the space

and the solution lengtis are globally optimal.
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8.2. Combining Macro Problem Solving with Other Methods

So far, the Macro Problem Solver has been presented in isolation as a complete problem solving
method. However, in reality this method is simplv another addition to a collection of existing tools
for gencral problem solving. It is natural to ask how well this new technique can be integrated or
combincd with the existing stock of idcas to solve probiems that no single method could solve alone.
In fact, the Macro Problem Solver can casily be integrated with other problem solving techniques

such as operator subgoaling, macro generalization, and problem decomposition,

8.2.1. Operator Subgoaling

The basic idca of opcerator subgoaling is that at a given state of a problem, if an opcrator which is
effective for achicving the next intermediate state in the problem is not applicable, then a subgoal is
sct up to satisfy the preconditions of the operator. A classic example of operator subgoaling occurs in
the Towers of Hanoi problem. [f an intermediate goal is to move the largest disk from its current peg
to its goal peg but there are smaller disks on top of it, then it cannot be moved. The solution is to st

up a subgoal of clearing the top of the largest disk so that it can be moved.

Bancrji {Banerji 83] generalizes the notion of operator subgoaling to include subgoals which make
an cxisting operator effective tor solving a subgoal rather than simply applicuble. For example, in
Rubik’s Cube, all operators are always applicable so there is no need for subgoals to ¢stablish the
preconditions of an operator. However, in general an opcrator will only be cffective in solving a
subgoal under certain conditions. This gives rise to subgoals of cstablishing thesc ¢ffectiveness

conditions.

Opcrator subgoaling can also be used with the Macro Problem Solver. As described so far, the
method requires a complete macro table such that at cach point in the solution process, there exists a
scparatec macro which will map the next state variable to its target value from cach possible value it

miay have. However, a complete macro table is unnccessary.

Assume that the macro table is incomplete and hence there is an empty slot in the table which
corresponds to a legal value for that state variable at that stage of the solution. Thus, when we get to
that stage of the solution, if the corresponding state variable has the value corresponding to the empty
slot, we sct up the sﬁbgoal of mapping the statc variable to onc of the values for which we have a
macro which will map it to its target value, This subgoal would be achicved by applying one of the

other macros in the same column of the table. The result is that the total number of macros that must
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be stored is reduced at the expense of a lenger overall solution length, since two or more macro

applications may be required to map a single state variable o its target value,

This is equivalent to the macro composition technique except that it is applicd at problem solving
time instcad of learning time. Human cube solvers, and particularly novices, make extensive use of

* this technique since it drastically reduces the number of macros they must learn and remember:

8.2.2. Macro Generalization

As described so far. a macro is a tixed sequence of explicitly named primitive operators which can
only fill a unique location in the macro table. However, another technique for reducing the number
of distinct macros that must be stored in the table is to gencralize macros so that the same generalized
macro can be used in more than one slot in the macro table. This technique was used extensively in
the work on MACROPS for the STRIPS system [Eikcs 72).

One way of generalizing a macro is to take advantage of symmetrics of the problem. For cxample,
in Rubik’s Cube, the macro (U2 R2 U2 R2 U2 R2) is very similar to the macro (1F2 122 £2 D2 2 D2),
and in fact to 22 other macros which consist of three repetitions of a 180 degree twist of one side
followed by a 130 degree twist of an adjacent side. This cntire class of imacros could be represented by
the parameterized macro M(x.y)=(x2 y2 x2 y2 x2 y2), where x and y arc constrained to be adjacent
faces. Similarly, in macros for the Think-a-Dot and Towers of Hanoi problems, the actual names of

input chanuels and pegs, respectively, could be replaced with variables under appropriate conditions.

Another way of generalizing macros is suggested by the Eight and Fifteen Puzzles. If we relax the
assumption that the position of the blank tile must be fixed between macro applications, then the
same scquence of Left, Right, Up, and Down moves could be applied starting from different

positions of the blank, and hence with different cffects,

In fact, the extent to which Eight and Fifteen Puzzle macros can be generalized is suggested by the
fact that an cxpert strategy for these problems can be built from only two macros: one that moves a
single tile in any dircction by repeatedly mancuvering the blank back in "front” of the tile, and
another macfo that completes a row by rotating the last two tiles into position. However, a general
description of cither of these macros would be relatively complex. For example, the macro for
moving a single tile must be able to usc any side of the tile to move the blank back in front duc to the
constraints of the boundaries and not moving previously positioned tiles. Similarly, the row

completion macro must work for both horizontal and vertical rows.
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8.2.3. Prcblem Decomposition

This work began with the observation that somie problems could not be solved by satistying a
scquence of subgoals one at a time without ever violating a previously satisficd subgoal, However,
there may be a ser of subgoals such that once cvery subgoal in the sct is satisfied, the rest of the
problem can be solved without violating any subgoal in the sct. For example, in the Fight Puzzle,
once the top row is correctly positioned, then the remainder of the the problem can always be solved

without ever disturbing this completed row. Such a problem is called block decomposable.

This idea is known as problem decompuosition and is at the heart of the General 'roblein Solver.
The value of this technique is that once a sct of subguoals is satistied. all operators that violate any of
these subgoals are deleted from the set of primitive operators, and hence the branching factor for the
remainder of the scarch is reduced. The disadvantage is that the resulting solution may be less

cfficient than a solution generated without protecting subgoals.

The way to combine this powerful problem decomposition method with the Macro Problem Solver
is first to divide the solution order into as many intervals as can be selved sequentially as scts of state
variables without violating previously solved scts. Then the macro learning program is used to
generate a macro table for cach of these subsequences individually, but using only those primitive
opcrators that do not affect any of the previously solved subsequences. In other words, the problem is
first decomposcd as far as possible into sets of subgoals that arc scrializable, and then the Macro
Problem Solver is used to solve cach set of subgoals independently. For example, a complcte
decomposition of the Eight Puzzle could separate the tiles into the sets {1}, {2.3}, {4.5}. and {6,7.8}.
Similarly, a complcte decomnposition for the Think-a-Dot problem could separate the gates into the
sets {1}, {2.4.6}. and {3.5,7.8} [Banerji 80].

The fact that the combination of these two methods is significantly morc powcerful than cither is
alonc is demonstrated by the full 3x3x3 Rubik’s Cube. Recall from Chapter § that the bi-dircctional
scarch for cube macros left seven empty slots in the macro table when memory was cxhausted, These
slots were filled by the macro composition technique, with the penalty that the resulting macros were
not the shortest macros for the job. However, by first solving a 2x2x2 subcube on the corner of the
full cube, the remainder of the cube can always be solved without cver disturbing the 2x2x2 subcube,
cven within a macro. In other words, the remainder of the cube can always he solved by twisting oaly

the remaining three faces.

The resulting macro table is shown in Table 8-6. The four movable cubies of the 2x2x2 subcube are
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CUBIE POSITION ORIENTATION MACRO

UF UL 0 L F

- UF utL 1 u-

ur us 0 u2

Uf us 1 B L U-
UF UR ] R- f-

UF UR 1 U

UF UF 1 F- L- U~
uf LF 0 L- U-

UF LF 1 F

UF L8 0 L U-

UFf L8 1 L2 F

UF RB 0 R- U

UF RB 1 R2 f-

UF RF 0 R U

UF RF 1 F-

UF oL 0 L- F

UF DL 1 L2 U-

UFf DB 0 D2 F2

UF D8 1 B- L U-
UF DR 0 R F-~

UF DR 1 R2 U

UF DF 0 F2

UFr DF 1 F L- U-
ULF ULFr 1 L D- L2
ULF ULLF 2 L2 O L-
ULF uLs 0 B D L-
ULF uLs 2 L

ULF ULB 1 B L2 -
ULF URB c B2 L2
ULF URB 1 B L

ULF URB 2 R2 D- L-
ULF URF 0 R2 D L2
ULF URF 2 R2 D2 L-
ULF URF 1 R- D- L-
ULF DLF 0 D- L2
ULF DLF 2 L-

ULF OLF 1 02 B- L2
ULF DLB 0 L2

ULF DLB 1 B- L

ULF oLB 2 D L-
ULF DRB 0 D L2
ULF DRB 2 D2 L-
ULF DRB 1 B- L2
ULF DRF 0 D2 L2
ULF DRF 1 D B- L2
ULF DRF 2 D- L-

Table 8-6: Macro Table for decomposed 3x3x3 Rubik’s Cube
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uL
uL
UL
uL
uL
uL
uL
UL
UL
uL
UL
uL
UL
uL
UL
uL
uL
uL
uL
UL
UL

LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF

uL
us
uB
UR
UR
LF
LF
LB
LB
RB
RB
RF
RF
oL
DL
D8
08
DR
DR
DF
DF

uB
us
UR
UR
LF
L8
LB
R8
RB
RF
RF
oL
DL
08
D8
DR
DR
DF
DF

—_ O R OFR ORFR O OFR,ROF OFe QrFk O O -

—_, O e O OO OO QR Ok O

fF2 B- U- F2
F L F-

L- U B8 U-
L D2 B2 L
F~ U F

F2 L- F2

F L2 F-
L- U- F U
uUu B- u-1L
F2 B2 U- f2
F R2 B U2
R F- U F
F L- F-
F2 U F2

u- L U

uz2 F- U2

u Ff- U-

u2 L U2

uz2 L- U- f- U-
Uz L2 ue

B- U- L U
U R2 F2 U-
B U-L wu
U F2 U-

R U F- U-
Uu D F u-
uz2 L- u2

U2 D L- v2
U D2 F U-
U D~ F U-
U R F2 U-
uz2 D~ L- U2
u F U-

Table 8-6, continued
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uLs uLs 2 B2 D B-
uLs uLs 1 B8 D- B2

uLB URB 0 R D B-

uLs URB 1 R B2

uLs URB 2 8

uLB URF 0 R2 B2

uLs URF 2 R2 D B-

uLs URF 1 R B

uLB DLF 0 D2 B2

uLB DLF 2 D- B-
uLs DLF 1 D R- B2
uLB DLB 0 D- B2

uLB bLB 1 D2 R- B2
ULB DOLB 2 B-
uLB DRB 0 B2
uLB ORB 2 D B-

uLB DRB 1 R- B

uLs DRF 0 D B2

uLB DRF 1 R- B2
uLB - DRF 2 D2 8-

us us 1 B2 D- R- D2 B2 D- B-
ua UR 0 R- B D2 R2 B

us UR 1 B2 R2 D R2 B2

us LB 0 B2 R D R B- D2 B-
uB LB 1 B- R2 8 D2 B-

uB RB 0 R 8 D 8- D- B-
us RB 1 R2 B8 D2 R2 B

us RF 0 B2 R- D R B2

us RF 1 B D2 R2 B

uB oL 0 D- 8 D-R D B2
us DL 1 D- B- R2 D2 B-

us 0B 0 B- R2 D2 B-

us D8 1 B D-R D B2

uB DR 0 R B D2 RZ2 B

uB DR 1 D B- R2 D2 B-

uB OF 0 D2. 8- R2 D2 B-

us Df 1 B2 D B R-B

Table 8-6, continucd
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LB
L8
LB
LB
LB
LB
L8
L8
L8
LB
LB
LB
LB
LB
LB

URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF
URF

UR
UR
UR
UR
Ur
UR
UR
Ur
UR
UR
UR
UR
UR

UR
UR
LB
RB
RB
RF
RF
DL
oL
]}
08
DR
DR
DF
DF

URB
URB
URS
URF
URF
DLF
DLF
DLF
DLS8
oLB
oLB
DRB
DRB
DRB
DRF
DRF
BRF

UR
RB
RB
RF
RF
0oL
DL
DB
D8
DR
DR
DF
DF

NP OPRPNONPFPOFRPMNOFPPNNPFO _-O0O P OROFRPRORFR OO PO

RO R O RO O RO O

B~
pe
D2
D

B~
D2
B~
R2
D~
D2
R2
R2

R2

R2

D2
B-
D2
B

R~
D2
B

D~
D

D2
D~
0~

B~ 0 B

D B-
B2

B2

B2

B2
B2

B2

B2
B2

t
@ @ O
i

0 0 o @
N |

VD000 00
t

R2

Table 8-6, continued
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URB URB 1 R B R2B8-D R-
URB URB 2 R D- B R2 B- R-
URB DLF 0 D2 R B R2 B- R-
URB DLF 2 R D2 R-
URB DLF 1 B- D2 B
URB DLB 0 R B R B-0 R-

URB DLB i D- R D R-
URB oLB 2 R D- R-
URB ORB 0 R B R2 B- R-

URB DRB 2 B- D- B

URB DRB 1 R D R-
URB DRF 0 D R B R2 B- R-
URB DRF 1 B- 0D 8B
URB DRF 2 D2 R O- R-

RF RB 0 R2 D2 R2 D2 R2

RF RB 1 R D B R- B- R-

RF RF 1 R- B- R- D2 R D B D R2
RF oL 0 D R D2 B R- B- D2 R-
RF DL 1 R2 D2 R- D2 R2

RF DB . 0 D R2 D2 .R- D2 R2

RF D8 1 B R2 DO R2 D- R2 B-

RF DR 0 R- D2 B-D B D2R

RF DR 1 R2 D2 R D2 R2

RF DF 0 D- R2 D2 R- D2 R2

RF DF 1 R D2 B R- B- D2 R-

RB RB 1 R2 D2 B3 R2 B- D2 R- D R-
RB DL 0 R D R- D- B-D- 8B

RB oL 1 b B-D B D R D- R-
R8 V]:] 0 B--D2 B D2 R D R-

RO 08 1 D R D- R- B R- B-R
RB . DR 0 R D2 R- D2 B- D- B

RB DR 1 D- B-D B D R D- R-
RB g 0 B- 0 B D R D- R-

RB DF 1 D- R D~ R- B R- B-R
OF DL 0 R- B-D-B D R D-

DF DL 1 )]

DF DB 0 D2

DF D8 1 B D R D- R- B-

DF DR 0 0O B O R D- R- B-

OF DR 1 D-

DF DF 1 B8 R D R- D- B- D2

DL DL 1 D2 R-B-D-B D R D
DL 0B 0 B D R D- R- B- D-

DL DB 1 R- 8-D-B D R

DL DR 0 R- D2 R D R-D R

oL DR 1 R- D- B-D B R

Table 8-6, continued
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D2 8 D-
0- R B~ D-
B- D2
D
D2
D_
D- B D B- D2 R-
8 D2 B-D R- D-

62 8-
R

)]
B-
D- R-
D..
D- B-
8
8- R-
R

D2 R

D_
D
D2 R B-

02 R
D_
B- R-
D

B

R D2 R-

D R

R

B- R-

R_

3- D

R-

B

D-

D B-R-D B D B-R D
R-

B- R2 D- R-
D- R B

B2 D-
R_
D

D2 B- R- D2 R
D

D
R..

02 R B- R-
D- R

R
B

B2 R-

D- R-

R-

D- B-

R_

D2 B- R B

8 D B- R- B

8

D- B-

D

R

D
B

0O B- D-
8 D PR
D B R-
D- R- B
D- R- D- R
R- D- R
R B R-
B D2B-R B
R~ B
R D-
R D2 8

1
0
1
2

DB

DR

DR
DLF
DLF
bLB
DLB
oLB
DRB
DRB
DRB
DRF
DRF
DRF
DLB
DLB
DR8
DR8
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DB
DB
0B

DLF

DLF

DLF

DLF

DLF

DLF
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solved using twists of all six faces while the remaining sixteen cubies arc solved by twisting only the
three faces which do not affect the 2x2x2 subcube. Note that some of the macros are fiftcen moves
long. This extra depth of scarch is made possible by the reduced branching factor which results from
removing the primitive operators that twist three of the faces. ‘The average solution length for this
macro table is 100 primitive moves which is slightly more than the 89 moves for the macro table

without the decomposition,

Ttis surprising to most human solvers that the lull Rubik’s Cube can be decomposed in this way.
This suggests that discovering such a decomposition for a problem, if one cxists at all, is a non-trivial
task in general. The heuristic that was used to suggest this decomposition was the same as that used
for generating solution orders, namely pick a sct of state variables such that the freedom of the
remaining state variables is maximized. Clearly, finding such problem decompositions is an arca

which requires further research.

8.3. A Measure of Problem Difficulty

It is natural ;0 ask what features of a problem ultimately limit the performance of the macro
lcarning program, cven when combined with a good decomposition of the problem into sets of
indepondent subgoals. Recatl that both the time and space complexity of the macro learning program
are dominated by the exponential term 5%5/2 where 8 is the average branching factor of the probiem
space and D; is the longest macro necessary to get between two ;ucccssive intermediate states. If we
assumce that the problem solver has this set of subgoals available and no additicnal knowledge about
the problem, then this quantity also appears to be a good intuitive measure of probiem difficulty as
experienced by other problem solving programs and human problem solvers. While further work

would be required to support or refute this claim, we advance it here as a plausible conjecture,

In evaluating this proposal, it is worthwhile to cxamine several competing mcasures. One relates
the difficulty of a problem to the size of the problem space. However, problem size is not a good
intuitive measure of problem difficulty because there exist problems in large spaces for which there
are short sotutions which are casy to find. For example, if we take the physical disks and pegs of the
Towers of Hanoi problem but remove the restrictions of moving one disk at a time and never placing
a larger disk on top of a smaller one, then we are left with an casy problem with a solution length of
at most two moves, onc for moving the disks from each of the non-goal pegs. However, the problem
space is cven larger than that of the standard Towers of Hanoi problem since the disks on a peg are

not constrained to be in order according to size.
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This suggests that a better measure of problem difficulty is the optimal solution iength in terms of
number of primitive moves. ‘Fhe touble with this hypothesis is that there exist problems for which
the solution path is long but which require few if any choices alung the way. For example, there are
several puzzies, such as the Chinese Rings problem, for which the problem graph is a single large
cycle with a branching factor of one after the first move. Such problems are not ditficult to solve if
the bookkeeping is done carctully, cven though they may be time consuming. As another cxample,

ot "dradgery” jors such as dding up long columns of numbees Bave diis property.
2 e i

Perhaps an analogy mentioned previously is uscful here. Consider the problem of crossing a strcam
on stepping stones. the sive of the stream, its length times its width, is analogous to the size of the
problem space, and the width of the strean corresponds to the length of the minimum solution path.
The stepping stones arc analogous to intermediate states or subgoals. Clearly the length of the stream
is irrclevant to the ditficulty of crossing it. Similarly, the width of the stream is not that important if
there are sufficient stepping stones. The eritical factor which determines the difficulty of crossing the
strcam is the spacing between the stepping stones. and in particular the maximum distance between

an adjacent pair of stones on the casicst path.

As another analogy, one is reminded of the two watchmakers, Hora and Tempus, in Simon’s
Sciences of the Artificial [Simon 69]. Both make watches frum 1000 different picces which fall apart
when the watchmaker must answer the phone. However, Hora's watches are constructed from ten
stable assemblies, cach of which is composed of ten stable subassemblies of ten picces cach, while
Tempus’™ watches have no stable assemblics or subassemblies. As a result, Hora can complete many
more watches than Tempus in spite of the same number of interruptions. The analogy is between the
number of picces that must be assembled to make up a stable subassembly and the number of moves

that must be made to get from onc subgoal to the next.

The value of subgoals for problem solving depends on the maximum distance between successive
subgoals being less than the total solution length. In other words D¢ must be less than Dp. This is
truc regardless of whether the subgoals are scrializable or not. The reason for protecting satisfied
subgoals when possible is based on two factors: onc is that it makes it much more likely that the
distance between subgoals will be less than the total solution length, and sccond, it reduces the
branching factor for the remainder of the search. Both of these factors improve the cfficiency of

problem solving and learning.

Our experiments have shown that for some problems, such as the 3x3x3 Rubik’s Cube, even
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without the benefit of independent subgoals which can be sol'vcd sequentially, the maximum distance
between successive subgoals (12 moves) is still significantly less than the optimal solution length
(greater than 17 moves). This implics that by solving these subgoals, progress toward the solution is
being made, cven though the subgoals do not remain solved. In other words, while the subgoals are

not independent, the degree of dependence among them is limited.

Related evidence can be found in the work of Goldberg [Goldberg 79] on NP-complete problems.
Goldberg showed that the average-case performance of a relatively simple algorithim for boolean
satisflability is of order N2 The fact that this problem is NP-complete in the worst case is related to
the fact that there are no known subproblems, such as satisfying assignments o subsets of the
variables, that are guaranteed to represent progress toward a total solution. However, Goldberg's
resuft suggests that by carefully making partial variable assignments, with a capability for
backtracking on failure, these intermediate states do in fact represent progress toward the goal on the

average.

In summary, two idecas have been presented in this section, One is that for a given decompuosition of
a probiem into subgoals, the branching factor of the space, raised to half the power of the maximum
distance between successive subgoals. is an appropriate measure of problem difficulty. The sccond is
that cven when such a set of subgoals is not scrializable, they otten represent progress ioward the
main goal, to the degree that the maximum distance between two successive subgoals (D) is less than

the total solution length (Dp).

8.4. Macros as a Representation for Knowledge

It is almost a cliche of artificial intclligence that cxpert problem solving performance in a domain
comes cnly as a result of a great deal of knowledge about the domain [Newell 82]. Clearly, the Macro
Problem Solver exhibits expert behavior in the domain of the cxample problems, Where then is the

knowledge? The knowledge is contained in the macro-operators which make up the macro table.

If macro-operators are an effective representation of knowledge in these domains, can knowledge
in other domains be represented as macros as well? In this section we will explore the use of macro-
opcrators as a representation for knowledge in several other domains. First, we will examine in detail
the domains of road navigation and Euclidcan problem spaces in general. Next, we will consider the
usc of macros to represent knowledge about arbitrary problem spaces. Finally, we will briefly touch
on the domains of thcorem proving and computer programming. For purposcs of this discussion, we
will depart from the restricted case of macros as used by the Macro Problem Solver, and refer to

macros as more general operator sequences.
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8.4.1. Road Navigation

The problem of road navigation is how to get from one point on a network of strects to another.
This problem has been studied by Kuipers {Kuipers 78, Kuipers 77] and by Elliot and Lesk [Elliot
82]. The states of the space are intersections between strects and the operators are the streets
themselves, which take a traveller from one intersection to another, But what do we define as the
primitive operators? We adopt the principle that a primitive operator is one that maps one legal state
into another without passing through intermediate states from which other operators could be
applied. Thus, in the case of road navigation, a primitive opcrator is a move between two adjacent
intersections. For example, a scction of street one block long serves as a primitive operator as does a
section of interstate highway between two successive interchanges. Note that this definition results in
a very large number of primitive operators, of the same order as the number of states. However, for
an arbitrary road network, there is no more economical description than simply to list all the

intersections and the conncctions between them.

Two different types of macros are used in road navigation. One is the routes that individuals
remember for frequently made trips. such as between home and work. The sccond is named roads,

which are macros used by an entire population of people to navigate in an area.

8.4.1.1. Individual Macros

An immediate observation about human problem solving in this space is that most of it is not
problem solving at all but simply recall of siored solutions. For example, to get from home to work
and back, most people do not plan a new route each day but rather follow a path that has been
learned and remembered. Similarly, most short trips in the vicinity of a person’s home or work are
accomplished by recall of stored routes. In fact, it is probably the case that for most people, most of

their road navigation is accomplished by remembering learned paths.

These paths are clearly macro-operators, since they are sequenccs of primitive operators, often
quite long, which are learned and stored. They are a very effective representation for knowledge

about how to get from one place to another in an area a person is familiar with,

The value of storing these macros comes from the fact that for any given individual, all possible
trips in an arca are not equally likely. Rather, certain trips, such as between home and work, occur
very frequently. Hence, it is computationally economical to store the macros for these trips since the

cost of learning and remembering them can be amortized over a large number of uses.
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Howcver, what it we cxpand our perspective beyond a single traveller w0 include an entire
population? When considering the sct of trips made by the entire population of an arca, we would
cxpect the frequency distribution of all possible trips by a large population to more closely
approximate a uniform distribution than that for an individual. Note that even for a population the
distribution will not be uniform. For cxample, trips to and from places with high concentrations of
people, such as lurge office buildings or cven cities, will be more frequent. However, it is a good
approximation when compared with the set of trips made by an individual. Are macros still uscful in

this situation?
8.4.1.2. Named Rouds as Macro Operators

When we look at 4 road network, what we find in addition to intersections and strects connecting
them is that certain sets of contiguous streets between intersections, usually straight but not always,
arc given the same names. In fact, alimost all street scctions are a part of some uniformly named road.
Furthermore, most motorists tend to follow these roads in the sense that at any given interscction,
most automobiles leave the intersection on the road with the same name as that on which they

entered the intersection.

Given our definition of a primitive operator as a scction of street between two adjacent
intersections, then these commonly named roads are macro-operators since they are scquences of
primitive operators. They are "stored” both on road maps and in the actual environment in the form

of street signs.

While most roads are straight sections of strcets, the view of a named road as a macro-operator
beecomes clearer when one considers certain types of non-standard roads. For example, when a state
or federal highway passcs through a town, it often follows a tortuous path with many turns while
maintaining its name. IFurthermore. in such a situation, the same section of road will often carry the
namcs of scveral different highways plus a local name as wcll. As another cxample, when
construction closes a section of a road, a detour that joins the two severed ends of the road and carrics
the same name is usually "constructed” by simply posting signs. In fact. roads arc often "built” by
just posting signs. A prime example of this are the beltways that surround Pittsburgh (c.g. the Blue
Belt). These roads were created by linking together existing sections of major sccondary roads with
road signs to mark cach of the many turns. Roads such as U.S. Route 1, which gocs from the eastern
border of Maine to Key West and includes the main strect of almost cvery city and town in between,

were also built by connccting together existing scctions of highway.
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An alternative to this model of a named road as z': macro-operator views a road as the result of a
scquence of streets projected at a higher level of abstraction and ignoring the fow level detail of cach
intersection. However, when one examines a road map drawn at a high level of abstraction, such as a
map showing just the U.S. Interstate Highway System, one still tinds named roads that pass through
more than onc intersection. Thus, if the primitive operators are still sections of road between
intersections, then named highways are still sequences of primitive operators or macros. The only
cffect of abstracting to a higher level spucé is that some macros in the lower level space become
primitive operators in the higher level space, and as a result, macros in the higher level space are

compuosed of fewer primitives than they were in the lower level space.

Nate that the uscfulness of a road is cnhanced by the fact that it can be used for a large number of
different trips. To be precisc. a two-way road can be used to get from any intersection on the road to
any other, and a onc-way road can be used to go from any interscction to any other in the correct
dircction. Hence, a road can be viewed as a collection of macros all sharing the same sequence of

rimitive operators but diftering in beginning and end points.
& o

Clearly, one of the reasons that motorists follow named roads is for efficiency or speed of travel.
Most roads are straight and a vehicle can go straight through an intersection faster than it can make a
turn. However. an equally important reason for the cxistence of named roads is as a navigational aid.
If une knows or is told that a certain road will take them to a certain destination, then at each
intersection along that road, and there may be many, the person knows which of several paths to take

out of the intersection.

Can we characterize more gencrally why macros arc uscful for the problem of strect navigation? In
other words, what cxactly is the value of a given macro-operator in such a space? In order to answer

this question, we will genceralize the problem space to a continuous Fuclidean plane.

8.4.2. Macres in Euclidean Problem Spaces

Consider an area with a very dense road netwoik, so densce that we can approximate it by a
continuous planc where every point is a state and there exists a primitive operator to go a short
distance, rclative to the size of the planc, in any direction from any point. A quantity of scarch in this
space is mcasured by the amount of two-dimensional arca covered. The problem is to find a path
betwecen two arbitrary points on this plane. We assume that we do not know the relative direction of

cither point from the other.
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The most cfficient strategy is to scarch outward in concentric circles from both endpoints
simultancously, until the circles intersect (see Figure 8-1). If the distance between the two points is
D, the circles will mecet after expanding to a radius of /2 cach, assuming they expand at the same

rate, and the total arca covered will be 2w(D/72) or # D¥/2,

o

Figure 8-1: Scarch with no macros

Now assume there is a marked path through the space running cast-west, in other words a macro-
opcrator (sce figure 8-2). In this case, the scarches proceed as before but if one of the scarches
intersects the path before reaching the other, then it follows the path in both directions until it meets
the other search. In that case the total amount of scarch is 7R? + 7R3 where R, and R, are the
perpendicular distances of cach endpoint from the path. The path will be useful whenever RY + R

is less than D¥/2,

Note that the introduction of a single macro reduces the amount of scarch for a large number of
problem instances, roughly for those pairs of initial and goal states that lic closer to the macro than to
each other. Howcver, there is a penalty for this search reduction and that is that the resulting paths
are not of optimal length. Any path using this macro will be longcr than the optimal path unless both
endpoints lic on the path and the path is straight.




Reflections and Furtler Work 7 121

Figure 8-2:  Scarch with one macro

An cast-west road is of no usc for finding a path between two points that are dircctly north-south of
cach other. However, if we add a north-south path, and conncct it to the cast-west path, we reduce
the search required for even more problem instances (sec Figure 8-3). In general. as we increase the
number of connected macros to cover more of the space, the amount of search to solve an arbitrary
problem instance becomes 27 R%, wheie R is the average distance from a state to the closest macro.

This assumes that no scarch is required within the macro nctwork.

Figure 8-3: Search with two macros
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8.4.3. Macros in Arbitrary Problem Spaces

Can we quantify the tadcott between the size of a macro network and the amount of scarch
required to solve an arbitrary problem noanee?  Furthermore, can we automatically learn a uscful
macro network for an arbitrary problem space? In order to answer these questions realistically, we

consider an arbitrary discrete problem space.
8.4.3.1. Mucro/Search Tradeoff

In order to quantity the macro/scarch tradco(f, we return to the sinele-goal model in wilich every
problem instance has a dilferent initial state but the same goal state. We assuine that the macro
network is connected, that it contains the single goal state, and that it uniformly covers the problem
spacc in the sensc that the average distance from a state to the closest macro is roughly constant over
the entire space. We further assume that finding a path to the goal from any point on the macro
network requires no scarch. Onc way of accomplishing this is to mark every macro with the direction

to the goal.

I.ct .S be the number of states in the space and let M be the size of tic macro network expressed as
the number of states that arc located on a macro. Since we assume that e macros uniformly cover
the space. we expect onc out of every S7.4/ states in any part of the space to lic on a macro, Thus, it
we start from any arbitrary initial state, we would expect to have to search about S/7.V/ states before
finding a statc on the macro network, Henge, the total amount of search is S/, Note that the
product uf the number of states in the macro network, M, and the amount of scarch required to find a
path from any arbitrary state to the goal, 74/, cquals the number of states in the space, S,
indcpendent of the size of the macro network. In other words, there is a multiplicative tradeuff
between the size of the macro network and the amount of scarch required 1o solve problem instances

in the space.

8.4.3.2. Learning Macros in Arbitrary Problem Spaces

Given an arbitrary problem space, how can we learn a macro network which will achicve the above
tradcoff? Once possibility is to take a random walk starting {rom the goal state, and store the patii as a
macro. However, random walks tend to wander around their origins, and hence such a macro is not
likcly to rcach states that are far from the goal. If we bias the random walk by cxcluding ali states that
were previously visited, the distance from the origin will gradually increase, but very slowly. Hence,

another technique is required.

Note that the most uscful macros in a Euclidean problem space are straight line scgments. A
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straight line has the property Lhnthc shortest path between any two points on the line is dong the
linc. The analog of a straight line in an arbitrary discrete problem space is a mucro with the property
that the shortest path between any two states on the macro is along the macro. All the macros
considered so far in this thesis, with the exception of the seven generated for the 3x3x3 Rubik’s Cube

using macro composition, have this optimality property.

This suggests that a uscful macro network for an arbitrary problem graph could be learned by
conducting a b cadth-first scarch from the goal state. and storing several macros which have the
property that cach successive state on cach macro is once move further from the goal via the shortest
path than the preceding state. Once the depth timit of the scarch is reached by exhausting the
available memory, then similar scarches could be sprouted from the ends of cach of the macros, and
this process could be repeated. A technigue such as this may prove to be a useful general learning

paradigm.

8.4.4. Macros in Theorem Proving and Computer Programming

We now turn our atiention to two rcal-world problem solving domains. thecorem proving and
computer prograinming, and find that much of the knowledge in these domains can be captured in

the form of macro-operators,
8.4.4.1. Theorem Proving -

Consider the problem of proving theorems in some axiomatized domain such as propositional
logic. A statc in the problem space is the sct of formulas that are known to be truc at any given point,
The initial state is composed of the axioms of the system plus the antecedent of the theorem to be
proved. The goal state is one in which the conscquent of the theorem is asserted. The task is to find a
sequence of states from the antecedent to the conscquent of the thecorem. The primitive opcerators of

the space are the rules of inference of the system.

A difficult theorem to prove usually involves a long sequence of applications of axioms and rules of
inference. One way in which a thcorem prover improves its performance is by lcarning and
remembering thcorems which can be used as lemmas to prove other theorems. When a theorem is
used as a lemma in a proof, it is simply a shorthand notation for the scquence of individual steps that
went into proving the thecorem initially. Thus a theorem behaves as a macro-opcerator when used in a

proof.

Knowledge about a domain generally advances by the accumulation of more and more theorems
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that are proven. These theorems have two purposes. Ong is that they represent knowledge about the
domain tor its own sake. The other, and perhaps more important purpose, is that these theorems can
be used as lemmas to prove other theorens, These other theorems o be proved may be beyond the
capability of the theorem prover without the addition of these lemmas as single deductions., Thus, we

find that much ot the knowledge in a theorem proving domain can be viewed as macro-operators.

8.4.4.2. Comiputer Programming

A similar situation ¢xists in the domain of computer programming. The problem of computer
programming is to gencrate a sequence of machinge instructions which when run on a computer will
mmplement a particular algorithm. The primitive operators of the spuace arc these machine
instructions. In general, a complex program may involve scquences which are thousands of machine

instructions long.

One of the carly techniques discovered for dealing with this complexity was higher level languages
and compilers. A higher level language is a sct of programming constructs with the property that in
general cach construct expands into several lower level machine instiuctions. (If the correspondence
1s one-to-onc. the language is called an assembly language.) A compiler is provided to perform this
translation automatically. Thus, the constructs of a higher level language can be vicwed as macro-

operators in the space of machine instructions.

The valuc of these higher level constructs is that they improve the cfficiency of the programming
process, although in gencral at a slight cost in efficiency of the resulting programs. The reason for the
improvement is that it has been shown empirically that the productivity of a programmer in terms of
statements per day is relatively independent of the language. Thus. a programmer coding in a higher
level language cffectively produces more machine language instructions per day than a programmer
in an assembly language. The constructs of a higher level language represent knowledge about
programming because they select out those particular scquences of machine instructions, out of all

possible sequences, which are likely to be most useful to a programmer.

Note that this process of constructing higher level macro-operators out of sequences of lower level
instructions is repcated at many different levels of the programming process. For cxample, the
beginning student of a higher level language Icarns and stores program schemas which arc common
patterns of usage of language statements. Similarly, the expert programmer usually writes a sct of
procedures or subroutines which arc appropriate to his application and then writes the rest of the

program in terms of thesc routines, Both these schemas and subroutines are macros constructed from
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the higher level language. and represent knowledge about a class ol programming problems or an -

application domain.

Hencee, we find that in computer programming, as in twearem proving, knowledge is often encoded
as macro-operators. {n fact, the term macro itself is borrowed from a sequence of instructions used in

compuiter programming.

8.5. Conclusions

There are scveral research directions for extending the waerk presented in this thesis. Onc is the
automatic scletion of solution orders and target values for the Macro Problem Solver. Another is
cnhancing the power of the method by combining it with other problem solving methods such as
opcrator subgoaling. macro gencralization, and problem decomposition. A third dircction is to
evaluate the proposed measure of problem difficulty with respect to other problem solving programs
and human problem solvers, Finally, the most important cxtension to this work is the application of
macros to other problem domains, and in particular the development of the paradigin of learning by

scarching for macro-operators.
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Chapter9
Conclusions

There are several conclusions that can be drawn from this work. The first is that our current
cotlection of weak methods is incomplete. In particular, there oxists problems, such as Rubik's Cube,
that cannot be solved efficiently by any of the weak methods, including means-cnds analysis and
heuristic scarch. However, these problems can be solved by people with no prior knowledge of the

problems. "This implics that some othier technique must be involved.

The Macro Problem Solver, a new problem solving method based on macro-operators, can solve
these problems ctficiently. The basic idea is that while the primitive operators of the space may make
large global changes in the state of the problem, there exist sequences of primitive operators that
make only small local changes. While a fairly general methed, the technique depends on problem

dependent knowledge in the form of the macro-operators.

These macros can be learned automatically. Learning is accomplished by searching through the
space of all macro-operatoers for those macros which leave most of the problem state invariant, The
macro lcarning techniques arc relatively problem independent. For difficult problems, such as the
full 3x3x3 Rubik’s Cube, the learning methods are sufficiently powerful to find all nccessary macros

is a reasonable amount of computer time (less than 15 minutes).

The success of this paradigm is based on a structural property of problems called operator
decomposability. An operator is totally decomposable if its effect on cach component of a state can
Le cxpressed as a function of only that component of the state. Given an ordering of the state
components, a operator is serially decomposable if its effect on cach state component can be
expressed as a function of only that component and any previous components in the ordering. Total
decomposability is a special case of serial decomposability. The Macro Problem Solver and the macro
lcarning techniques arc cffective for any problems which are serially decomposable. Operator
decomposability is a property of a problem space which allows a gencral strategy for solving a

problem from any initial state to be based on a relatively small amount of knowledge.
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The performance of this method. ineasured in terms of m.lmbcr of macros that have to be stored,
learning time, and numbcr ot‘primitivc operators for a solution, is quite acceptable when compared
with problem difficulty. In particular, 1} the nuraber of macros is a small fraction of the otal number
of states in the space. 2) the amount of time to learn all the macros is of the same order as would be
required to solve just one instance of the problem, and 3) the worst case solution length is no more

than # times the optimal solution length, where 2 is the number of subgoals the problem is broken

down into.

Finally, it is vobscrved that macro-opcerators, viewed more gencerally, are a usctul representation for
knowledge in several domains, including road navigation, theorem proving, compuler programming,
‘This suggests that the paradigm of learning by scarching for macro-operators may be a fairly genceral

learning paradigm, or in other words, a weak method for learning,.
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